Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

llm_app.py 13KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import json
  17. from flask import request
  18. from flask_login import login_required, current_user
  19. from api.db.services.llm_service import LLMFactoriesService, TenantLLMService, LLMService
  20. from api.settings import LIGHTEN
  21. from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
  22. from api.db import StatusEnum, LLMType
  23. from api.db.db_models import TenantLLM
  24. from api.utils.api_utils import get_json_result
  25. from rag.llm import EmbeddingModel, ChatModel, RerankModel, CvModel, TTSModel
  26. import requests
  27. @manager.route('/factories', methods=['GET'])
  28. @login_required
  29. def factories():
  30. try:
  31. fac = LLMFactoriesService.get_all()
  32. fac = [f.to_dict() for f in fac if f.name not in ["Youdao", "FastEmbed", "BAAI"]]
  33. llms = LLMService.get_all()
  34. mdl_types = {}
  35. for m in llms:
  36. if m.status != StatusEnum.VALID.value:
  37. continue
  38. if m.fid not in mdl_types:
  39. mdl_types[m.fid] = set([])
  40. mdl_types[m.fid].add(m.model_type)
  41. for f in fac:
  42. f["model_types"] = list(mdl_types.get(f["name"], [LLMType.CHAT, LLMType.EMBEDDING, LLMType.RERANK,
  43. LLMType.IMAGE2TEXT, LLMType.SPEECH2TEXT, LLMType.TTS]))
  44. return get_json_result(data=fac)
  45. except Exception as e:
  46. return server_error_response(e)
  47. @manager.route('/set_api_key', methods=['POST'])
  48. @login_required
  49. @validate_request("llm_factory", "api_key")
  50. def set_api_key():
  51. req = request.json
  52. # test if api key works
  53. chat_passed, embd_passed, rerank_passed = False, False, False
  54. factory = req["llm_factory"]
  55. msg = ""
  56. for llm in LLMService.query(fid=factory)[:3]:
  57. if not embd_passed and llm.model_type == LLMType.EMBEDDING.value:
  58. mdl = EmbeddingModel[factory](
  59. req["api_key"], llm.llm_name, base_url=req.get("base_url"))
  60. try:
  61. arr, tc = mdl.encode(["Test if the api key is available"])
  62. if len(arr[0]) == 0:
  63. raise Exception("Fail")
  64. embd_passed = True
  65. except Exception as e:
  66. msg += f"\nFail to access embedding model({llm.llm_name}) using this api key." + str(e)
  67. elif not chat_passed and llm.model_type == LLMType.CHAT.value:
  68. mdl = ChatModel[factory](
  69. req["api_key"], llm.llm_name, base_url=req.get("base_url"))
  70. try:
  71. m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}],
  72. {"temperature": 0.9,'max_tokens':50})
  73. if m.find("**ERROR**") >=0:
  74. raise Exception(m)
  75. except Exception as e:
  76. msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(
  77. e)
  78. chat_passed = True
  79. elif not rerank_passed and llm.model_type == LLMType.RERANK:
  80. mdl = RerankModel[factory](
  81. req["api_key"], llm.llm_name, base_url=req.get("base_url"))
  82. try:
  83. arr, tc = mdl.similarity("What's the weather?", ["Is it sunny today?"])
  84. if len(arr) == 0 or tc == 0:
  85. raise Exception("Fail")
  86. except Exception as e:
  87. msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(
  88. e)
  89. rerank_passed = True
  90. if msg:
  91. return get_data_error_result(retmsg=msg)
  92. llm_config = {
  93. "api_key": req["api_key"],
  94. "api_base": req.get("base_url", "")
  95. }
  96. for n in ["model_type", "llm_name"]:
  97. if n in req:
  98. llm_config[n] = req[n]
  99. for llm in LLMService.query(fid=factory):
  100. if not TenantLLMService.filter_update(
  101. [TenantLLM.tenant_id == current_user.id,
  102. TenantLLM.llm_factory == factory,
  103. TenantLLM.llm_name == llm.llm_name],
  104. llm_config):
  105. TenantLLMService.save(
  106. tenant_id=current_user.id,
  107. llm_factory=factory,
  108. llm_name=llm.llm_name,
  109. model_type=llm.model_type,
  110. api_key=llm_config["api_key"],
  111. api_base=llm_config["api_base"]
  112. )
  113. return get_json_result(data=True)
  114. @manager.route('/add_llm', methods=['POST'])
  115. @login_required
  116. @validate_request("llm_factory")
  117. def add_llm():
  118. req = request.json
  119. factory = req["llm_factory"]
  120. def apikey_json(keys):
  121. nonlocal req
  122. return json.dumps({k: req.get(k, "") for k in keys})
  123. if factory == "VolcEngine":
  124. # For VolcEngine, due to its special authentication method
  125. # Assemble ark_api_key endpoint_id into api_key
  126. llm_name = req["llm_name"]
  127. api_key = apikey_json(["ark_api_key", "endpoint_id"])
  128. elif factory == "Tencent Hunyuan":
  129. req["api_key"] = apikey_json(["hunyuan_sid", "hunyuan_sk"])
  130. return set_api_key()
  131. elif factory == "Tencent Cloud":
  132. req["api_key"] = apikey_json(["tencent_cloud_sid", "tencent_cloud_sk"])
  133. elif factory == "Bedrock":
  134. # For Bedrock, due to its special authentication method
  135. # Assemble bedrock_ak, bedrock_sk, bedrock_region
  136. llm_name = req["llm_name"]
  137. api_key = apikey_json(["bedrock_ak", "bedrock_sk", "bedrock_region"])
  138. elif factory == "LocalAI":
  139. llm_name = req["llm_name"]+"___LocalAI"
  140. api_key = "xxxxxxxxxxxxxxx"
  141. elif factory == "OpenAI-API-Compatible":
  142. llm_name = req["llm_name"]+"___OpenAI-API"
  143. api_key = req.get("api_key","xxxxxxxxxxxxxxx")
  144. elif factory =="XunFei Spark":
  145. llm_name = req["llm_name"]
  146. if req["model_type"] == "chat":
  147. api_key = req.get("spark_api_password", "xxxxxxxxxxxxxxx")
  148. elif req["model_type"] == "tts":
  149. api_key = apikey_json(["spark_app_id", "spark_api_secret","spark_api_key"])
  150. elif factory == "BaiduYiyan":
  151. llm_name = req["llm_name"]
  152. api_key = apikey_json(["yiyan_ak", "yiyan_sk"])
  153. elif factory == "Fish Audio":
  154. llm_name = req["llm_name"]
  155. api_key = apikey_json(["fish_audio_ak", "fish_audio_refid"])
  156. elif factory == "Google Cloud":
  157. llm_name = req["llm_name"]
  158. api_key = apikey_json(["google_project_id", "google_region", "google_service_account_key"])
  159. else:
  160. llm_name = req["llm_name"]
  161. api_key = req.get("api_key", "xxxxxxxxxxxxxxx")
  162. llm = {
  163. "tenant_id": current_user.id,
  164. "llm_factory": factory,
  165. "model_type": req["model_type"],
  166. "llm_name": llm_name,
  167. "api_base": req.get("api_base", ""),
  168. "api_key": api_key
  169. }
  170. msg = ""
  171. if llm["model_type"] == LLMType.EMBEDDING.value:
  172. mdl = EmbeddingModel[factory](
  173. key=llm['api_key'],
  174. model_name=llm["llm_name"],
  175. base_url=llm["api_base"])
  176. try:
  177. arr, tc = mdl.encode(["Test if the api key is available"])
  178. if len(arr[0]) == 0 or tc == 0:
  179. raise Exception("Fail")
  180. except Exception as e:
  181. msg += f"\nFail to access embedding model({llm['llm_name']})." + str(e)
  182. elif llm["model_type"] == LLMType.CHAT.value:
  183. mdl = ChatModel[factory](
  184. key=llm['api_key'],
  185. model_name=llm["llm_name"],
  186. base_url=llm["api_base"]
  187. )
  188. try:
  189. m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {
  190. "temperature": 0.9})
  191. if not tc:
  192. raise Exception(m)
  193. except Exception as e:
  194. msg += f"\nFail to access model({llm['llm_name']})." + str(
  195. e)
  196. elif llm["model_type"] == LLMType.RERANK:
  197. mdl = RerankModel[factory](
  198. key=llm["api_key"],
  199. model_name=llm["llm_name"],
  200. base_url=llm["api_base"]
  201. )
  202. try:
  203. arr, tc = mdl.similarity("Hello~ Ragflower!", ["Hi, there!"])
  204. if len(arr) == 0 or tc == 0:
  205. raise Exception("Not known.")
  206. except Exception as e:
  207. msg += f"\nFail to access model({llm['llm_name']})." + str(
  208. e)
  209. elif llm["model_type"] == LLMType.IMAGE2TEXT.value:
  210. mdl = CvModel[factory](
  211. key=llm["api_key"],
  212. model_name=llm["llm_name"],
  213. base_url=llm["api_base"]
  214. )
  215. try:
  216. img_url = (
  217. "https://upload.wikimedia.org/wikipedia/comm"
  218. "ons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/256"
  219. "0px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
  220. )
  221. res = requests.get(img_url)
  222. if res.status_code == 200:
  223. m, tc = mdl.describe(res.content)
  224. if not tc:
  225. raise Exception(m)
  226. else:
  227. pass
  228. except Exception as e:
  229. msg += f"\nFail to access model({llm['llm_name']})." + str(e)
  230. elif llm["model_type"] == LLMType.TTS:
  231. mdl = TTSModel[factory](
  232. key=llm["api_key"], model_name=llm["llm_name"], base_url=llm["api_base"]
  233. )
  234. try:
  235. for resp in mdl.tts("Hello~ Ragflower!"):
  236. pass
  237. except RuntimeError as e:
  238. msg += f"\nFail to access model({llm['llm_name']})." + str(e)
  239. else:
  240. # TODO: check other type of models
  241. pass
  242. if msg:
  243. return get_data_error_result(retmsg=msg)
  244. if not TenantLLMService.filter_update(
  245. [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == factory, TenantLLM.llm_name == llm["llm_name"]], llm):
  246. TenantLLMService.save(**llm)
  247. return get_json_result(data=True)
  248. @manager.route('/delete_llm', methods=['POST'])
  249. @login_required
  250. @validate_request("llm_factory", "llm_name")
  251. def delete_llm():
  252. req = request.json
  253. TenantLLMService.filter_delete(
  254. [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"], TenantLLM.llm_name == req["llm_name"]])
  255. return get_json_result(data=True)
  256. @manager.route('/delete_factory', methods=['POST'])
  257. @login_required
  258. @validate_request("llm_factory")
  259. def delete_factory():
  260. req = request.json
  261. TenantLLMService.filter_delete(
  262. [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"]])
  263. return get_json_result(data=True)
  264. @manager.route('/my_llms', methods=['GET'])
  265. @login_required
  266. def my_llms():
  267. try:
  268. res = {}
  269. for o in TenantLLMService.get_my_llms(current_user.id):
  270. if o["llm_factory"] not in res:
  271. res[o["llm_factory"]] = {
  272. "tags": o["tags"],
  273. "llm": []
  274. }
  275. res[o["llm_factory"]]["llm"].append({
  276. "type": o["model_type"],
  277. "name": o["llm_name"],
  278. "used_token": o["used_tokens"]
  279. })
  280. return get_json_result(data=res)
  281. except Exception as e:
  282. return server_error_response(e)
  283. @manager.route('/list', methods=['GET'])
  284. @login_required
  285. def list_app():
  286. self_deploied = ["Youdao","FastEmbed", "BAAI", "Ollama", "Xinference", "LocalAI", "LM-Studio"]
  287. weighted = ["Youdao","FastEmbed", "BAAI"] if LIGHTEN else []
  288. model_type = request.args.get("model_type")
  289. try:
  290. objs = TenantLLMService.query(tenant_id=current_user.id)
  291. facts = set([o.to_dict()["llm_factory"] for o in objs if o.api_key])
  292. llms = LLMService.get_all()
  293. llms = [m.to_dict()
  294. for m in llms if m.status == StatusEnum.VALID.value and m.fid not in weighted]
  295. for m in llms:
  296. m["available"] = m["fid"] in facts or m["llm_name"].lower() == "flag-embedding" or m["fid"] in self_deploied
  297. llm_set = set([m["llm_name"] for m in llms])
  298. for o in objs:
  299. if not o.api_key:continue
  300. if o.llm_name in llm_set:continue
  301. llms.append({"llm_name": o.llm_name, "model_type": o.model_type, "fid": o.llm_factory, "available": True})
  302. res = {}
  303. for m in llms:
  304. if model_type and m["model_type"].find(model_type)<0:
  305. continue
  306. if m["fid"] not in res:
  307. res[m["fid"]] = []
  308. res[m["fid"]].append(m)
  309. return get_json_result(data=res)
  310. except Exception as e:
  311. return server_error_response(e)