| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405 | 
							- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import pathlib
 - import datetime
 - 
 - from rag.app.qa import rmPrefix, beAdoc
 - from rag.nlp import rag_tokenizer
 - from api.db import LLMType, ParserType
 - from api.db.services.llm_service import TenantLLMService, LLMBundle
 - from api import settings
 - import xxhash
 - import re
 - from api.utils.api_utils import token_required
 - from api.db.db_models import Task
 - from api.db.services.task_service import TaskService, queue_tasks
 - from api.utils.api_utils import server_error_response
 - from api.utils.api_utils import get_result, get_error_data_result
 - from io import BytesIO
 - from flask import request, send_file
 - from api.db import FileSource, TaskStatus, FileType
 - from api.db.db_models import File
 - from api.db.services.document_service import DocumentService
 - from api.db.services.file2document_service import File2DocumentService
 - from api.db.services.file_service import FileService
 - from api.db.services.knowledgebase_service import KnowledgebaseService
 - from api.utils.api_utils import construct_json_result, get_parser_config
 - from rag.nlp import search
 - from rag.prompts import keyword_extraction
 - from rag.app.tag import label_question
 - from rag.utils import rmSpace
 - from rag.utils.storage_factory import STORAGE_IMPL
 - 
 - from pydantic import BaseModel, Field, validator
 - 
 - MAXIMUM_OF_UPLOADING_FILES = 256
 - 
 - 
 - class Chunk(BaseModel):
 -     id: str = ""
 -     content: str = ""
 -     document_id: str = ""
 -     docnm_kwd: str = ""
 -     important_keywords: list = Field(default_factory=list)
 -     questions: list = Field(default_factory=list)
 -     question_tks: str = ""
 -     image_id: str = ""
 -     available: bool = True
 -     positions: list[list[int]] = Field(default_factory=list)
 - 
 -     @validator('positions')
 -     def validate_positions(cls, value):
 -         for sublist in value:
 -             if len(sublist) != 5:
 -                 raise ValueError("Each sublist in positions must have a length of 5")
 -         return value
 - 
 - @manager.route("/datasets/<dataset_id>/documents", methods=["POST"])  # noqa: F821
 - @token_required
 - def upload(dataset_id, tenant_id):
 -     """
 -     Upload documents to a dataset.
 -     ---
 -     tags:
 -       - Documents
 -     security:
 -       - ApiKeyAuth: []
 -     parameters:
 -       - in: path
 -         name: dataset_id
 -         type: string
 -         required: true
 -         description: ID of the dataset.
 -       - in: header
 -         name: Authorization
 -         type: string
 -         required: true
 -         description: Bearer token for authentication.
 -       - in: formData
 -         name: file
 -         type: file
 -         required: true
 -         description: Document files to upload.
 -     responses:
 -       200:
 -         description: Successfully uploaded documents.
 -         schema:
 -           type: object
 -           properties:
 -             data:
 -               type: array
 -               items:
 -                 type: object
 -                 properties:
 -                   id:
 -                     type: string
 -                     description: Document ID.
 -                   name:
 -                     type: string
 -                     description: Document name.
 -                   chunk_count:
 -                     type: integer
 -                     description: Number of chunks.
 -                   token_count:
 -                     type: integer
 -                     description: Number of tokens.
 -                   dataset_id:
 -                     type: string
 -                     description: ID of the dataset.
 -                   chunk_method:
 -                     type: string
 -                     description: Chunking method used.
 -                   run:
 -                     type: string
 -                     description: Processing status.
 -     """
 -     if "file" not in request.files:
 -         return get_error_data_result(
 -             message="No file part!", code=settings.RetCode.ARGUMENT_ERROR
 -         )
 -     file_objs = request.files.getlist("file")
 -     for file_obj in file_objs:
 -         if file_obj.filename == "":
 -             return get_result(
 -                 message="No file selected!", code=settings.RetCode.ARGUMENT_ERROR
 -             )
 -     '''
 -     # total size
 -     total_size = 0
 -     for file_obj in file_objs:
 -         file_obj.seek(0, os.SEEK_END)
 -         total_size += file_obj.tell()
 -         file_obj.seek(0)
 -     MAX_TOTAL_FILE_SIZE = 10 * 1024 * 1024
 -     if total_size > MAX_TOTAL_FILE_SIZE:
 -         return get_result(
 -             message=f"Total file size exceeds 10MB limit! ({total_size / (1024 * 1024):.2f} MB)",
 -             code=settings.RetCode.ARGUMENT_ERROR,
 -         )
 -     '''
 -     e, kb = KnowledgebaseService.get_by_id(dataset_id)
 -     if not e:
 -         raise LookupError(f"Can't find the dataset with ID {dataset_id}!")
 -     err, files = FileService.upload_document(kb, file_objs, tenant_id)
 -     if err:
 -         return get_result(message="\n".join(err), code=settings.RetCode.SERVER_ERROR)
 -     # rename key's name
 -     renamed_doc_list = []
 -     for file in files:
 -         doc = file[0]
 -         key_mapping = {
 -             "chunk_num": "chunk_count",
 -             "kb_id": "dataset_id",
 -             "token_num": "token_count",
 -             "parser_id": "chunk_method",
 -         }
 -         renamed_doc = {}
 -         for key, value in doc.items():
 -             new_key = key_mapping.get(key, key)
 -             renamed_doc[new_key] = value
 -         renamed_doc["run"] = "UNSTART"
 -         renamed_doc_list.append(renamed_doc)
 -     return get_result(data=renamed_doc_list)
 - 
 - 
 - @manager.route("/datasets/<dataset_id>/documents/<document_id>", methods=["PUT"])  # noqa: F821
 - @token_required
 - def update_doc(tenant_id, dataset_id, document_id):
 -     """
 -     Update a document within a dataset.
 -     ---
 -     tags:
 -       - Documents
 -     security:
 -       - ApiKeyAuth: []
 -     parameters:
 -       - in: path
 -         name: dataset_id
 -         type: string
 -         required: true
 -         description: ID of the dataset.
 -       - in: path
 -         name: document_id
 -         type: string
 -         required: true
 -         description: ID of the document to update.
 -       - in: header
 -         name: Authorization
 -         type: string
 -         required: true
 -         description: Bearer token for authentication.
 -       - in: body
 -         name: body
 -         description: Document update parameters.
 -         required: true
 -         schema:
 -           type: object
 -           properties:
 -             name:
 -               type: string
 -               description: New name of the document.
 -             parser_config:
 -               type: object
 -               description: Parser configuration.
 -             chunk_method:
 -               type: string
 -               description: Chunking method.
 -     responses:
 -       200:
 -         description: Document updated successfully.
 -         schema:
 -           type: object
 -     """
 -     req = request.json
 -     if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
 -         return get_error_data_result(message="You don't own the dataset.")
 -     doc = DocumentService.query(kb_id=dataset_id, id=document_id)
 -     if not doc:
 -         return get_error_data_result(message="The dataset doesn't own the document.")
 -     doc = doc[0]
 -     if "chunk_count" in req:
 -         if req["chunk_count"] != doc.chunk_num:
 -             return get_error_data_result(message="Can't change `chunk_count`.")
 -     if "token_count" in req:
 -         if req["token_count"] != doc.token_num:
 -             return get_error_data_result(message="Can't change `token_count`.")
 -     if "progress" in req:
 -         if req["progress"] != doc.progress:
 -             return get_error_data_result(message="Can't change `progress`.")
 - 
 -     if "name" in req and req["name"] != doc.name:
 -         if (
 -                 pathlib.Path(req["name"].lower()).suffix
 -                 != pathlib.Path(doc.name.lower()).suffix
 -         ):
 -             return get_result(
 -                 message="The extension of file can't be changed",
 -                 code=settings.RetCode.ARGUMENT_ERROR,
 -             )
 -         for d in DocumentService.query(name=req["name"], kb_id=doc.kb_id):
 -             if d.name == req["name"]:
 -                 return get_error_data_result(
 -                     message="Duplicated document name in the same dataset."
 -                 )
 -         if not DocumentService.update_by_id(document_id, {"name": req["name"]}):
 -             return get_error_data_result(message="Database error (Document rename)!")
 -         if "meta_fields" in req:
 -             if not isinstance(req["meta_fields"], dict):
 -                 return get_error_data_result(message="meta_fields must be a dictionary")
 -             DocumentService.update_meta_fields(document_id, req["meta_fields"])
 - 
 -         informs = File2DocumentService.get_by_document_id(document_id)
 -         if informs:
 -             e, file = FileService.get_by_id(informs[0].file_id)
 -             FileService.update_by_id(file.id, {"name": req["name"]})
 -     if "parser_config" in req:
 -         DocumentService.update_parser_config(doc.id, req["parser_config"])
 -     if "chunk_method" in req:
 -         valid_chunk_method = {
 -             "naive",
 -             "manual",
 -             "qa",
 -             "table",
 -             "paper",
 -             "book",
 -             "laws",
 -             "presentation",
 -             "picture",
 -             "one",
 -             "knowledge_graph",
 -             "email",
 -             "tag"
 -         }
 -         if req.get("chunk_method") not in valid_chunk_method:
 -             return get_error_data_result(
 -                 f"`chunk_method` {req['chunk_method']} doesn't exist"
 -             )
 -         if doc.parser_id.lower() == req["chunk_method"].lower():
 -             return get_result()
 - 
 -         if doc.type == FileType.VISUAL or re.search(r"\.(ppt|pptx|pages)$", doc.name):
 -             return get_error_data_result(message="Not supported yet!")
 - 
 -         e = DocumentService.update_by_id(
 -             doc.id,
 -             {
 -                 "parser_id": req["chunk_method"],
 -                 "progress": 0,
 -                 "progress_msg": "",
 -                 "run": TaskStatus.UNSTART.value,
 -             },
 -         )
 -         if not e:
 -             return get_error_data_result(message="Document not found!")
 -         req["parser_config"] = get_parser_config(
 -             req["chunk_method"], req.get("parser_config")
 -         )
 -         DocumentService.update_parser_config(doc.id, req["parser_config"])
 -         if doc.token_num > 0:
 -             e = DocumentService.increment_chunk_num(
 -                 doc.id,
 -                 doc.kb_id,
 -                 doc.token_num * -1,
 -                 doc.chunk_num * -1,
 -                 doc.process_duation * -1,
 -             )
 -             if not e:
 -                 return get_error_data_result(message="Document not found!")
 -             settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), dataset_id)
 - 
 -     return get_result()
 - 
 - 
 - @manager.route("/datasets/<dataset_id>/documents/<document_id>", methods=["GET"])  # noqa: F821
 - @token_required
 - def download(tenant_id, dataset_id, document_id):
 -     """
 -     Download a document from a dataset.
 -     ---
 -     tags:
 -       - Documents
 -     security:
 -       - ApiKeyAuth: []
 -     produces:
 -       - application/octet-stream
 -     parameters:
 -       - in: path
 -         name: dataset_id
 -         type: string
 -         required: true
 -         description: ID of the dataset.
 -       - in: path
 -         name: document_id
 -         type: string
 -         required: true
 -         description: ID of the document to download.
 -       - in: header
 -         name: Authorization
 -         type: string
 -         required: true
 -         description: Bearer token for authentication.
 -     responses:
 -       200:
 -         description: Document file stream.
 -         schema:
 -           type: file
 -       400:
 -         description: Error message.
 -         schema:
 -           type: object
 -     """
 -     if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
 -         return get_error_data_result(message=f"You do not own the dataset {dataset_id}.")
 -     doc = DocumentService.query(kb_id=dataset_id, id=document_id)
 -     if not doc:
 -         return get_error_data_result(
 -             message=f"The dataset not own the document {document_id}."
 -         )
 -     # The process of downloading
 -     doc_id, doc_location = File2DocumentService.get_storage_address(
 -         doc_id=document_id
 -     )  # minio address
 -     file_stream = STORAGE_IMPL.get(doc_id, doc_location)
 -     if not file_stream:
 -         return construct_json_result(
 -             message="This file is empty.", code=settings.RetCode.DATA_ERROR
 -         )
 -     file = BytesIO(file_stream)
 -     # Use send_file with a proper filename and MIME type
 -     return send_file(
 -         file,
 -         as_attachment=True,
 -         download_name=doc[0].name,
 -         mimetype="application/octet-stream",  # Set a default MIME type
 -     )
 - 
 - 
 - @manager.route("/datasets/<dataset_id>/documents", methods=["GET"])  # noqa: F821
 - @token_required
 - def list_docs(dataset_id, tenant_id):
 -     """
 -     List documents in a dataset.
 -     ---
 -     tags:
 -       - Documents
 -     security:
 -       - ApiKeyAuth: []
 -     parameters:
 -       - in: path
 -         name: dataset_id
 -         type: string
 -         required: true
 -         description: ID of the dataset.
 -       - in: query
 -         name: id
 -         type: string
 -         required: false
 -         description: Filter by document ID.
 -       - in: query
 -         name: page
 -         type: integer
 -         required: false
 -         default: 1
 -         description: Page number.
 -       - in: query
 -         name: page_size
 -         type: integer
 -         required: false
 -         default: 30
 -         description: Number of items per page.
 -       - in: query
 -         name: orderby
 -         type: string
 -         required: false
 -         default: "create_time"
 -         description: Field to order by.
 -       - in: query
 -         name: desc
 -         type: boolean
 -         required: false
 -         default: true
 -         description: Order in descending.
 -       - in: header
 -         name: Authorization
 -         type: string
 -         required: true
 -         description: Bearer token for authentication.
 -     responses:
 -       200:
 -         description: List of documents.
 -         schema:
 -           type: object
 -           properties:
 -             total:
 -               type: integer
 -               description: Total number of documents.
 -             docs:
 -               type: array
 -               items:
 -                 type: object
 -                 properties:
 -                   id:
 -                     type: string
 -                     description: Document ID.
 -                   name:
 -                     type: string
 -                     description: Document name.
 -                   chunk_count:
 -                     type: integer
 -                     description: Number of chunks.
 -                   token_count:
 -                     type: integer
 -                     description: Number of tokens.
 -                   dataset_id:
 -                     type: string
 -                     description: ID of the dataset.
 -                   chunk_method:
 -                     type: string
 -                     description: Chunking method used.
 -                   run:
 -                     type: string
 -                     description: Processing status.
 -     """
 -     if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
 -         return get_error_data_result(message=f"You don't own the dataset {dataset_id}. ")
 -     id = request.args.get("id")
 -     name = request.args.get("name")
 - 
 -     if id and not DocumentService.query(id=id, kb_id=dataset_id):
 -         return get_error_data_result(message=f"You don't own the document {id}.")
 -     if name and not DocumentService.query(name=name, kb_id=dataset_id):
 -         return get_error_data_result(message=f"You don't own the document {name}.")
 -     
 -     page = int(request.args.get("page", 1))
 -     keywords = request.args.get("keywords", "")
 -     page_size = int(request.args.get("page_size", 30))
 -     orderby = request.args.get("orderby", "create_time")
 -     if request.args.get("desc") == "False":
 -         desc = False
 -     else:
 -         desc = True
 -     docs, tol = DocumentService.get_list(
 -         dataset_id, page, page_size, orderby, desc, keywords, id, name
 -     )
 - 
 -     # rename key's name
 -     renamed_doc_list = []
 -     for doc in docs:
 -         key_mapping = {
 -             "chunk_num": "chunk_count",
 -             "kb_id": "dataset_id",
 -             "token_num": "token_count",
 -             "parser_id": "chunk_method",
 -         }
 -         run_mapping = {
 -             "0": "UNSTART",
 -             "1": "RUNNING",
 -             "2": "CANCEL",
 -             "3": "DONE",
 -             "4": "FAIL",
 -         }
 -         renamed_doc = {}
 -         for key, value in doc.items():
 -             if key == "run":
 -                 renamed_doc["run"] = run_mapping.get(str(value))
 -             new_key = key_mapping.get(key, key)
 -             renamed_doc[new_key] = value
 -             if key == "run":
 -                 renamed_doc["run"] = run_mapping.get(value)
 -         renamed_doc_list.append(renamed_doc)
 -     return get_result(data={"total": tol, "docs": renamed_doc_list})
 - 
 - 
 - @manager.route("/datasets/<dataset_id>/documents", methods=["DELETE"])  # noqa: F821
 - @token_required
 - def delete(tenant_id, dataset_id):
 -     """
 -     Delete documents from a dataset.
 -     ---
 -     tags:
 -       - Documents
 -     security:
 -       - ApiKeyAuth: []
 -     parameters:
 -       - in: path
 -         name: dataset_id
 -         type: string
 -         required: true
 -         description: ID of the dataset.
 -       - in: body
 -         name: body
 -         description: Document deletion parameters.
 -         required: true
 -         schema:
 -           type: object
 -           properties:
 -             ids:
 -               type: array
 -               items:
 -                 type: string
 -               description: List of document IDs to delete.
 -       - in: header
 -         name: Authorization
 -         type: string
 -         required: true
 -         description: Bearer token for authentication.
 -     responses:
 -       200:
 -         description: Documents deleted successfully.
 -         schema:
 -           type: object
 -     """
 -     if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
 -         return get_error_data_result(message=f"You don't own the dataset {dataset_id}. ")
 -     req = request.json
 -     if not req:
 -         doc_ids = None
 -     else:
 -         doc_ids = req.get("ids")
 -     if not doc_ids:
 -         doc_list = []
 -         docs = DocumentService.query(kb_id=dataset_id)
 -         for doc in docs:
 -             doc_list.append(doc.id)
 -     else:
 -         doc_list = doc_ids
 -     root_folder = FileService.get_root_folder(tenant_id)
 -     pf_id = root_folder["id"]
 -     FileService.init_knowledgebase_docs(pf_id, tenant_id)
 -     errors = ""
 -     for doc_id in doc_list:
 -         try:
 -             e, doc = DocumentService.get_by_id(doc_id)
 -             if not e:
 -                 return get_error_data_result(message="Document not found!")
 -             tenant_id = DocumentService.get_tenant_id(doc_id)
 -             if not tenant_id:
 -                 return get_error_data_result(message="Tenant not found!")
 - 
 -             b, n = File2DocumentService.get_storage_address(doc_id=doc_id)
 - 
 -             if not DocumentService.remove_document(doc, tenant_id):
 -                 return get_error_data_result(
 -                     message="Database error (Document removal)!"
 -                 )
 - 
 -             f2d = File2DocumentService.get_by_document_id(doc_id)
 -             FileService.filter_delete(
 -                 [
 -                     File.source_type == FileSource.KNOWLEDGEBASE,
 -                     File.id == f2d[0].file_id,
 -                 ]
 -             )
 -             File2DocumentService.delete_by_document_id(doc_id)
 - 
 -             STORAGE_IMPL.rm(b, n)
 -         except Exception as e:
 -             errors += str(e)
 - 
 -     if errors:
 -         return get_result(message=errors, code=settings.RetCode.SERVER_ERROR)
 - 
 -     return get_result()
 - 
 - 
 - @manager.route("/datasets/<dataset_id>/chunks", methods=["POST"])  # noqa: F821
 - @token_required
 - def parse(tenant_id, dataset_id):
 -     """
 -     Start parsing documents into chunks.
 -     ---
 -     tags:
 -       - Chunks
 -     security:
 -       - ApiKeyAuth: []
 -     parameters:
 -       - in: path
 -         name: dataset_id
 -         type: string
 -         required: true
 -         description: ID of the dataset.
 -       - in: body
 -         name: body
 -         description: Parsing parameters.
 -         required: true
 -         schema:
 -           type: object
 -           properties:
 -             document_ids:
 -               type: array
 -               items:
 -                 type: string
 -               description: List of document IDs to parse.
 -       - in: header
 -         name: Authorization
 -         type: string
 -         required: true
 -         description: Bearer token for authentication.
 -     responses:
 -       200:
 -         description: Parsing started successfully.
 -         schema:
 -           type: object
 -     """
 -     if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
 -         return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
 -     req = request.json
 -     if not req.get("document_ids"):
 -         return get_error_data_result("`document_ids` is required")
 -     for id in req["document_ids"]:
 -         doc = DocumentService.query(id=id, kb_id=dataset_id)
 -         if not doc:
 -             return get_error_data_result(message=f"You don't own the document {id}.")
 -         if doc[0].progress != 0.0:
 -             return get_error_data_result(
 -                 "Can't stop parsing document with progress at 0 or 100"
 -             )
 -         info = {"run": "1", "progress": 0}
 -         info["progress_msg"] = ""
 -         info["chunk_num"] = 0
 -         info["token_num"] = 0
 -         DocumentService.update_by_id(id, info)
 -         settings.docStoreConn.delete({"doc_id": id}, search.index_name(tenant_id), dataset_id)
 -         TaskService.filter_delete([Task.doc_id == id])
 -         e, doc = DocumentService.get_by_id(id)
 -         doc = doc.to_dict()
 -         doc["tenant_id"] = tenant_id
 -         bucket, name = File2DocumentService.get_storage_address(doc_id=doc["id"])
 -         queue_tasks(doc, bucket, name)
 -     return get_result()
 - 
 - 
 - @manager.route("/datasets/<dataset_id>/chunks", methods=["DELETE"])  # noqa: F821
 - @token_required
 - def stop_parsing(tenant_id, dataset_id):
 -     """
 -     Stop parsing documents into chunks.
 -     ---
 -     tags:
 -       - Chunks
 -     security:
 -       - ApiKeyAuth: []
 -     parameters:
 -       - in: path
 -         name: dataset_id
 -         type: string
 -         required: true
 -         description: ID of the dataset.
 -       - in: body
 -         name: body
 -         description: Stop parsing parameters.
 -         required: true
 -         schema:
 -           type: object
 -           properties:
 -             document_ids:
 -               type: array
 -               items:
 -                 type: string
 -               description: List of document IDs to stop parsing.
 -       - in: header
 -         name: Authorization
 -         type: string
 -         required: true
 -         description: Bearer token for authentication.
 -     responses:
 -       200:
 -         description: Parsing stopped successfully.
 -         schema:
 -           type: object
 -     """
 -     if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
 -         return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
 -     req = request.json
 -     if not req.get("document_ids"):
 -         return get_error_data_result("`document_ids` is required")
 -     for id in req["document_ids"]:
 -         doc = DocumentService.query(id=id, kb_id=dataset_id)
 -         if not doc:
 -             return get_error_data_result(message=f"You don't own the document {id}.")
 -         if int(doc[0].progress) == 1 or doc[0].progress == 0:
 -             return get_error_data_result(
 -                 "Can't stop parsing document with progress at 0 or 1"
 -             )
 -         info = {"run": "2", "progress": 0, "chunk_num": 0}
 -         DocumentService.update_by_id(id, info)
 -         settings.docStoreConn.delete({"doc_id": doc[0].id}, search.index_name(tenant_id), dataset_id)
 -     return get_result()
 - 
 - 
 - @manager.route("/datasets/<dataset_id>/documents/<document_id>/chunks", methods=["GET"])  # noqa: F821
 - @token_required
 - def list_chunks(tenant_id, dataset_id, document_id):
 -     """
 -     List chunks of a document.
 -     ---
 -     tags:
 -       - Chunks
 -     security:
 -       - ApiKeyAuth: []
 -     parameters:
 -       - in: path
 -         name: dataset_id
 -         type: string
 -         required: true
 -         description: ID of the dataset.
 -       - in: path
 -         name: document_id
 -         type: string
 -         required: true
 -         description: ID of the document.
 -       - in: query
 -         name: page
 -         type: integer
 -         required: false
 -         default: 1
 -         description: Page number.
 -       - in: query
 -         name: page_size
 -         type: integer
 -         required: false
 -         default: 30
 -         description: Number of items per page.
 -       - in: header
 -         name: Authorization
 -         type: string
 -         required: true
 -         description: Bearer token for authentication.
 -     responses:
 -       200:
 -         description: List of chunks.
 -         schema:
 -           type: object
 -           properties:
 -             total:
 -               type: integer
 -               description: Total number of chunks.
 -             chunks:
 -               type: array
 -               items:
 -                 type: object
 -                 properties:
 -                   id:
 -                     type: string
 -                     description: Chunk ID.
 -                   content:
 -                     type: string
 -                     description: Chunk content.
 -                   document_id:
 -                     type: string
 -                     description: ID of the document.
 -                   important_keywords:
 -                     type: array
 -                     items:
 -                       type: string
 -                     description: Important keywords.
 -                   image_id:
 -                     type: string
 -                     description: Image ID associated with the chunk.
 -             doc:
 -               type: object
 -               description: Document details.
 -     """
 -     if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
 -         return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
 -     doc = DocumentService.query(id=document_id, kb_id=dataset_id)
 -     if not doc:
 -         return get_error_data_result(
 -             message=f"You don't own the document {document_id}."
 -         )
 -     doc = doc[0]
 -     req = request.args
 -     doc_id = document_id
 -     page = int(req.get("page", 1))
 -     size = int(req.get("page_size", 30))
 -     question = req.get("keywords", "")
 -     query = {
 -         "doc_ids": [doc_id],
 -         "page": page,
 -         "size": size,
 -         "question": question,
 -         "sort": True,
 -     }
 -     key_mapping = {
 -         "chunk_num": "chunk_count",
 -         "kb_id": "dataset_id",
 -         "token_num": "token_count",
 -         "parser_id": "chunk_method",
 -     }
 -     run_mapping = {
 -         "0": "UNSTART",
 -         "1": "RUNNING",
 -         "2": "CANCEL",
 -         "3": "DONE",
 -         "4": "FAIL",
 -     }
 -     doc = doc.to_dict()
 -     renamed_doc = {}
 -     for key, value in doc.items():
 -         new_key = key_mapping.get(key, key)
 -         renamed_doc[new_key] = value
 -         if key == "run":
 -             renamed_doc["run"] = run_mapping.get(str(value))
 - 
 -     res = {"total": 0, "chunks": [], "doc": renamed_doc}
 -     if req.get("id"):
 -         chunk = settings.docStoreConn.get(req.get("id"), search.index_name(tenant_id), [dataset_id])
 -         k = []
 -         for n in chunk.keys():
 -             if re.search(r"(_vec$|_sm_|_tks|_ltks)", n):
 -                 k.append(n)
 -         for n in k:
 -             del chunk[n]
 -         if not chunk:
 -             return get_error_data_result(f"Chunk `{req.get('id')}` not found.")
 -         res['total'] = 1
 -         final_chunk = {
 -             "id":chunk.get("id",chunk.get("chunk_id")),
 -             "content":chunk["content_with_weight"],
 -             "document_id":chunk.get("doc_id",chunk.get("document_id")),
 -             "docnm_kwd":chunk["docnm_kwd"],
 -             "important_keywords":chunk.get("important_kwd",[]),
 -             "questions":chunk.get("question_kwd",[]),
 -             "dataset_id":chunk.get("kb_id",chunk.get("dataset_id")),
 -             "image_id":chunk["img_id"],
 -             "available":bool(chunk.get("available_int",1)),
 -             "positions":chunk.get("position_int",[]),
 -         }
 -         res["chunks"].append(final_chunk)
 -         _ = Chunk(**final_chunk)
 - 
 -     elif settings.docStoreConn.indexExist(search.index_name(tenant_id), dataset_id):
 -         sres = settings.retrievaler.search(query, search.index_name(tenant_id), [dataset_id], emb_mdl=None,
 -                                            highlight=True)
 -         res["total"] = sres.total
 -         for id in sres.ids:
 -             d = {
 -                 "id": id,
 -                 "content": (
 -                     rmSpace(sres.highlight[id])
 -                     if question and id in sres.highlight
 -                     else sres.field[id].get("content_with_weight", "")
 -                 ),
 -                 "document_id": sres.field[id]["doc_id"],
 -                 "docnm_kwd": sres.field[id]["docnm_kwd"],
 -                 "important_keywords": sres.field[id].get("important_kwd", []),
 -                 "questions": sres.field[id].get("question_kwd", []),
 -                 "dataset_id": sres.field[id].get("kb_id", sres.field[id].get("dataset_id")),
 -                 "image_id": sres.field[id].get("img_id", ""),
 -                 "available": bool(sres.field[id].get("available_int", 1)),
 -                 "positions": sres.field[id].get("position_int",[]),
 -             }
 -             res["chunks"].append(d)
 -             _ = Chunk(**d) # validate the chunk
 -     return get_result(data=res)
 - 
 - 
 - @manager.route(  # noqa: F821
 -     "/datasets/<dataset_id>/documents/<document_id>/chunks", methods=["POST"]
 - )
 - @token_required
 - def add_chunk(tenant_id, dataset_id, document_id):
 -     """
 -     Add a chunk to a document.
 -     ---
 -     tags:
 -       - Chunks
 -     security:
 -       - ApiKeyAuth: []
 -     parameters:
 -       - in: path
 -         name: dataset_id
 -         type: string
 -         required: true
 -         description: ID of the dataset.
 -       - in: path
 -         name: document_id
 -         type: string
 -         required: true
 -         description: ID of the document.
 -       - in: body
 -         name: body
 -         description: Chunk data.
 -         required: true
 -         schema:
 -           type: object
 -           properties:
 -             content:
 -               type: string
 -               required: true
 -               description: Content of the chunk.
 -             important_keywords:
 -               type: array
 -               items:
 -                 type: string
 -               description: Important keywords.
 -       - in: header
 -         name: Authorization
 -         type: string
 -         required: true
 -         description: Bearer token for authentication.
 -     responses:
 -       200:
 -         description: Chunk added successfully.
 -         schema:
 -           type: object
 -           properties:
 -             chunk:
 -               type: object
 -               properties:
 -                 id:
 -                   type: string
 -                   description: Chunk ID.
 -                 content:
 -                   type: string
 -                   description: Chunk content.
 -                 document_id:
 -                   type: string
 -                   description: ID of the document.
 -                 important_keywords:
 -                   type: array
 -                   items:
 -                     type: string
 -                   description: Important keywords.
 -     """
 -     if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
 -         return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
 -     doc = DocumentService.query(id=document_id, kb_id=dataset_id)
 -     if not doc:
 -         return get_error_data_result(
 -             message=f"You don't own the document {document_id}."
 -         )
 -     doc = doc[0]
 -     req = request.json
 -     if not req.get("content"):
 -         return get_error_data_result(message="`content` is required")
 -     if "important_keywords" in req:
 -         if not isinstance(req["important_keywords"], list):
 -             return get_error_data_result(
 -                 "`important_keywords` is required to be a list"
 -             )
 -     if "questions" in req:
 -         if not isinstance(req["questions"], list):
 -             return get_error_data_result(
 -                 "`questions` is required to be a list"
 -             )
 -     chunk_id = xxhash.xxh64((req["content"] + document_id).encode("utf-8")).hexdigest()
 -     d = {
 -         "id": chunk_id,
 -         "content_ltks": rag_tokenizer.tokenize(req["content"]),
 -         "content_with_weight": req["content"],
 -     }
 -     d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
 -     d["important_kwd"] = req.get("important_keywords", [])
 -     d["important_tks"] = rag_tokenizer.tokenize(
 -         " ".join(req.get("important_keywords", []))
 -     )
 -     d["question_kwd"] = req.get("questions", [])
 -     d["question_tks"] = rag_tokenizer.tokenize(
 -         "\n".join(req.get("questions", []))
 -     )
 -     d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
 -     d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
 -     d["kb_id"] = dataset_id
 -     d["docnm_kwd"] = doc.name
 -     d["doc_id"] = document_id
 -     embd_id = DocumentService.get_embd_id(document_id)
 -     embd_mdl = TenantLLMService.model_instance(
 -         tenant_id, LLMType.EMBEDDING.value, embd_id
 -     )
 -     v, c = embd_mdl.encode([doc.name, req["content"] if not d["question_kwd"] else "\n".join(d["question_kwd"])])
 -     v = 0.1 * v[0] + 0.9 * v[1]
 -     d["q_%d_vec" % len(v)] = v.tolist()
 -     settings.docStoreConn.insert([d], search.index_name(tenant_id), dataset_id)
 - 
 -     DocumentService.increment_chunk_num(doc.id, doc.kb_id, c, 1, 0)
 -     # rename keys
 -     key_mapping = {
 -         "id": "id",
 -         "content_with_weight": "content",
 -         "doc_id": "document_id",
 -         "important_kwd": "important_keywords",
 -         "question_kwd": "questions",
 -         "kb_id": "dataset_id",
 -         "create_timestamp_flt": "create_timestamp",
 -         "create_time": "create_time",
 -         "document_keyword": "document",
 -     }
 -     renamed_chunk = {}
 -     for key, value in d.items():
 -         if key in key_mapping:
 -             new_key = key_mapping.get(key, key)
 -             renamed_chunk[new_key] = value
 -     _ = Chunk(**renamed_chunk)  # validate the chunk
 -     return get_result(data={"chunk": renamed_chunk})
 -     # return get_result(data={"chunk_id": chunk_id})
 - 
 - 
 - @manager.route(  # noqa: F821
 -     "datasets/<dataset_id>/documents/<document_id>/chunks", methods=["DELETE"]
 - )
 - @token_required
 - def rm_chunk(tenant_id, dataset_id, document_id):
 -     """
 -     Remove chunks from a document.
 -     ---
 -     tags:
 -       - Chunks
 -     security:
 -       - ApiKeyAuth: []
 -     parameters:
 -       - in: path
 -         name: dataset_id
 -         type: string
 -         required: true
 -         description: ID of the dataset.
 -       - in: path
 -         name: document_id
 -         type: string
 -         required: true
 -         description: ID of the document.
 -       - in: body
 -         name: body
 -         description: Chunk removal parameters.
 -         required: true
 -         schema:
 -           type: object
 -           properties:
 -             chunk_ids:
 -               type: array
 -               items:
 -                 type: string
 -               description: List of chunk IDs to remove.
 -       - in: header
 -         name: Authorization
 -         type: string
 -         required: true
 -         description: Bearer token for authentication.
 -     responses:
 -       200:
 -         description: Chunks removed successfully.
 -         schema:
 -           type: object
 -     """
 -     if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
 -         return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
 -     req = request.json
 -     condition = {"doc_id": document_id}
 -     if "chunk_ids" in req:
 -         condition["id"] = req["chunk_ids"]
 -     chunk_number = settings.docStoreConn.delete(condition, search.index_name(tenant_id), dataset_id)
 -     if chunk_number != 0:
 -         DocumentService.decrement_chunk_num(document_id, dataset_id, 1, chunk_number, 0)
 -     if "chunk_ids" in req and chunk_number != len(req["chunk_ids"]):
 -         return get_error_data_result(message=f"rm_chunk deleted chunks {chunk_number}, expect {len(req['chunk_ids'])}")
 -     return get_result(message=f"deleted {chunk_number} chunks")
 - 
 - 
 - @manager.route(  # noqa: F821
 -     "/datasets/<dataset_id>/documents/<document_id>/chunks/<chunk_id>", methods=["PUT"]
 - )
 - @token_required
 - def update_chunk(tenant_id, dataset_id, document_id, chunk_id):
 -     """
 -     Update a chunk within a document.
 -     ---
 -     tags:
 -       - Chunks
 -     security:
 -       - ApiKeyAuth: []
 -     parameters:
 -       - in: path
 -         name: dataset_id
 -         type: string
 -         required: true
 -         description: ID of the dataset.
 -       - in: path
 -         name: document_id
 -         type: string
 -         required: true
 -         description: ID of the document.
 -       - in: path
 -         name: chunk_id
 -         type: string
 -         required: true
 -         description: ID of the chunk to update.
 -       - in: body
 -         name: body
 -         description: Chunk update parameters.
 -         required: true
 -         schema:
 -           type: object
 -           properties:
 -             content:
 -               type: string
 -               description: Updated content of the chunk.
 -             important_keywords:
 -               type: array
 -               items:
 -                 type: string
 -               description: Updated important keywords.
 -             available:
 -               type: boolean
 -               description: Availability status of the chunk.
 -       - in: header
 -         name: Authorization
 -         type: string
 -         required: true
 -         description: Bearer token for authentication.
 -     responses:
 -       200:
 -         description: Chunk updated successfully.
 -         schema:
 -           type: object
 -     """
 -     chunk = settings.docStoreConn.get(chunk_id, search.index_name(tenant_id), [dataset_id])
 -     if chunk is None:
 -         return get_error_data_result(f"Can't find this chunk {chunk_id}")
 -     if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
 -         return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
 -     doc = DocumentService.query(id=document_id, kb_id=dataset_id)
 -     if not doc:
 -         return get_error_data_result(
 -             message=f"You don't own the document {document_id}."
 -         )
 -     doc = doc[0]
 -     req = request.json
 -     if "content" in req:
 -         content = req["content"]
 -     else:
 -         content = chunk.get("content_with_weight", "")
 -     d = {"id": chunk_id, "content_with_weight": content}
 -     d["content_ltks"] = rag_tokenizer.tokenize(d["content_with_weight"])
 -     d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
 -     if "important_keywords" in req:
 -         if not isinstance(req["important_keywords"], list):
 -             return get_error_data_result("`important_keywords` should be a list")
 -         d["important_kwd"] = req.get("important_keywords", [])
 -         d["important_tks"] = rag_tokenizer.tokenize(" ".join(req["important_keywords"]))
 -     if "questions" in req:
 -         if not isinstance(req["questions"], list):
 -             return get_error_data_result("`questions` should be a list")
 -         d["question_kwd"] = req.get("questions")
 -         d["question_tks"] = rag_tokenizer.tokenize("\n".join(req["questions"]))
 -     if "available" in req:
 -         d["available_int"] = int(req["available"])
 -     embd_id = DocumentService.get_embd_id(document_id)
 -     embd_mdl = TenantLLMService.model_instance(
 -         tenant_id, LLMType.EMBEDDING.value, embd_id
 -     )
 -     if doc.parser_id == ParserType.QA:
 -         arr = [t for t in re.split(r"[\n\t]", d["content_with_weight"]) if len(t) > 1]
 -         if len(arr) != 2:
 -             return get_error_data_result(
 -                 message="Q&A must be separated by TAB/ENTER key."
 -             )
 -         q, a = rmPrefix(arr[0]), rmPrefix(arr[1])
 -         d = beAdoc(
 -             d, arr[0], arr[1], not any([rag_tokenizer.is_chinese(t) for t in q + a])
 -         )
 - 
 -     v, c = embd_mdl.encode([doc.name, d["content_with_weight"] if not d.get("question_kwd") else "\n".join(d["question_kwd"])])
 -     v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
 -     d["q_%d_vec" % len(v)] = v.tolist()
 -     settings.docStoreConn.update({"id": chunk_id}, d, search.index_name(tenant_id), dataset_id)
 -     return get_result()
 - 
 - 
 - @manager.route("/retrieval", methods=["POST"])  # noqa: F821
 - @token_required
 - def retrieval_test(tenant_id):
 -     """
 -     Retrieve chunks based on a query.
 -     ---
 -     tags:
 -       - Retrieval
 -     security:
 -       - ApiKeyAuth: []
 -     parameters:
 -       - in: body
 -         name: body
 -         description: Retrieval parameters.
 -         required: true
 -         schema:
 -           type: object
 -           properties:
 -             dataset_ids:
 -               type: array
 -               items:
 -                 type: string
 -               required: true
 -               description: List of dataset IDs to search in.
 -             question:
 -               type: string
 -               required: true
 -               description: Query string.
 -             document_ids:
 -               type: array
 -               items:
 -                 type: string
 -               description: List of document IDs to filter.
 -             similarity_threshold:
 -               type: number
 -               format: float
 -               description: Similarity threshold.
 -             vector_similarity_weight:
 -               type: number
 -               format: float
 -               description: Vector similarity weight.
 -             top_k:
 -               type: integer
 -               description: Maximum number of chunks to return.
 -             highlight:
 -               type: boolean
 -               description: Whether to highlight matched content.
 -       - in: header
 -         name: Authorization
 -         type: string
 -         required: true
 -         description: Bearer token for authentication.
 -     responses:
 -       200:
 -         description: Retrieval results.
 -         schema:
 -           type: object
 -           properties:
 -             chunks:
 -               type: array
 -               items:
 -                 type: object
 -                 properties:
 -                   id:
 -                     type: string
 -                     description: Chunk ID.
 -                   content:
 -                     type: string
 -                     description: Chunk content.
 -                   document_id:
 -                     type: string
 -                     description: ID of the document.
 -                   dataset_id:
 -                     type: string
 -                     description: ID of the dataset.
 -                   similarity:
 -                     type: number
 -                     format: float
 -                     description: Similarity score.
 -     """
 -     req = request.json
 -     if not req.get("dataset_ids"):
 -         return get_error_data_result("`dataset_ids` is required.")
 -     kb_ids = req["dataset_ids"]
 -     if not isinstance(kb_ids, list):
 -         return get_error_data_result("`dataset_ids` should be a list")
 -     for id in kb_ids:
 -         if not KnowledgebaseService.accessible(kb_id=id, user_id=tenant_id):
 -             return get_error_data_result(f"You don't own the dataset {id}.")
 -     kbs = KnowledgebaseService.get_by_ids(kb_ids)
 -     embd_nms = list(set([TenantLLMService.split_model_name_and_factory(kb.embd_id)[0] for kb in kbs]))  # remove vendor suffix for comparison
 -     if len(embd_nms) != 1:
 -         return get_result(
 -             message='Datasets use different embedding models."',
 -             code=settings.RetCode.DATA_ERROR,
 -         )
 -     if "question" not in req:
 -         return get_error_data_result("`question` is required.")
 -     page = int(req.get("page", 1))
 -     size = int(req.get("page_size", 30))
 -     question = req["question"]
 -     doc_ids = req.get("document_ids", [])
 -     use_kg = req.get("use_kg", False)
 -     if not isinstance(doc_ids, list):
 -         return get_error_data_result("`documents` should be a list")
 -     doc_ids_list = KnowledgebaseService.list_documents_by_ids(kb_ids)
 -     for doc_id in doc_ids:
 -         if doc_id not in doc_ids_list:
 -             return get_error_data_result(
 -                 f"The datasets don't own the document {doc_id}"
 -             )
 -     similarity_threshold = float(req.get("similarity_threshold", 0.2))
 -     vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
 -     top = int(req.get("top_k", 1024))
 -     if req.get("highlight") == "False" or req.get("highlight") == "false":
 -         highlight = False
 -     else:
 -         highlight = True
 -     try:
 -         e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
 -         if not e:
 -             return get_error_data_result(message="Dataset not found!")
 -         embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id)
 - 
 -         rerank_mdl = None
 -         if req.get("rerank_id"):
 -             rerank_mdl = LLMBundle(kb.tenant_id, LLMType.RERANK, llm_name=req["rerank_id"])
 - 
 -         if req.get("keyword", False):
 -             chat_mdl = LLMBundle(kb.tenant_id, LLMType.CHAT)
 -             question += keyword_extraction(chat_mdl, question)
 - 
 -         ranks = settings.retrievaler.retrieval(
 -             question,
 -             embd_mdl,
 -             kb.tenant_id,
 -             kb_ids,
 -             page,
 -             size,
 -             similarity_threshold,
 -             vector_similarity_weight,
 -             top,
 -             doc_ids,
 -             rerank_mdl=rerank_mdl,
 -             highlight=highlight,
 -             rank_feature=label_question(question, kbs)
 -         )
 -         if use_kg:
 -             ck = settings.kg_retrievaler.retrieval(question,
 -                                                    [k.tenant_id for k in kbs],
 -                                                    kb_ids,
 -                                                    embd_mdl,
 -                                                    LLMBundle(kb.tenant_id, LLMType.CHAT))
 -             if ck["content_with_weight"]:
 -                 ranks["chunks"].insert(0, ck)
 - 
 -         for c in ranks["chunks"]:
 -             c.pop("vector", None)
 - 
 -         ##rename keys
 -         renamed_chunks = []
 -         for chunk in ranks["chunks"]:
 -             key_mapping = {
 -                 "chunk_id": "id",
 -                 "content_with_weight": "content",
 -                 "doc_id": "document_id",
 -                 "important_kwd": "important_keywords",
 -                 "question_kwd": "questions",
 -                 "docnm_kwd": "document_keyword",
 -                 "kb_id":"dataset_id"
 -             }
 -             rename_chunk = {}
 -             for key, value in chunk.items():
 -                 new_key = key_mapping.get(key, key)
 -                 rename_chunk[new_key] = value
 -             renamed_chunks.append(rename_chunk)
 -         ranks["chunks"] = renamed_chunks
 -         return get_result(data=ranks)
 -     except Exception as e:
 -         if str(e).find("not_found") > 0:
 -             return get_result(
 -                 message="No chunk found! Check the chunk status please!",
 -                 code=settings.RetCode.DATA_ERROR,
 -             )
 -         return server_error_response(e)
 
 
  |