您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

embedding_model.py 33KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import logging
  17. import re
  18. import threading
  19. from urllib.parse import urljoin
  20. import requests
  21. from huggingface_hub import snapshot_download
  22. from zhipuai import ZhipuAI
  23. import os
  24. from abc import ABC
  25. from ollama import Client
  26. import dashscope
  27. from openai import OpenAI
  28. import numpy as np
  29. import asyncio
  30. from api import settings
  31. from api.utils.file_utils import get_home_cache_dir
  32. from api.utils.log_utils import log_exception
  33. from rag.utils import num_tokens_from_string, truncate
  34. import google.generativeai as genai
  35. import json
  36. class Base(ABC):
  37. def __init__(self, key, model_name):
  38. pass
  39. def encode(self, texts: list):
  40. raise NotImplementedError("Please implement encode method!")
  41. def encode_queries(self, text: str):
  42. raise NotImplementedError("Please implement encode method!")
  43. def total_token_count(self, resp):
  44. try:
  45. return resp.usage.total_tokens
  46. except Exception:
  47. pass
  48. try:
  49. return resp["usage"]["total_tokens"]
  50. except Exception:
  51. pass
  52. return 0
  53. class DefaultEmbedding(Base):
  54. os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  55. _model = None
  56. _model_name = ""
  57. _model_lock = threading.Lock()
  58. def __init__(self, key, model_name, **kwargs):
  59. """
  60. If you have trouble downloading HuggingFace models, -_^ this might help!!
  61. For Linux:
  62. export HF_ENDPOINT=https://hf-mirror.com
  63. For Windows:
  64. Good luck
  65. ^_-
  66. """
  67. if not settings.LIGHTEN:
  68. with DefaultEmbedding._model_lock:
  69. from FlagEmbedding import FlagModel
  70. import torch
  71. if not DefaultEmbedding._model or model_name != DefaultEmbedding._model_name:
  72. try:
  73. DefaultEmbedding._model = FlagModel(os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
  74. query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
  75. use_fp16=torch.cuda.is_available())
  76. DefaultEmbedding._model_name = model_name
  77. except Exception:
  78. model_dir = snapshot_download(repo_id="BAAI/bge-large-zh-v1.5",
  79. local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
  80. local_dir_use_symlinks=False)
  81. DefaultEmbedding._model = FlagModel(model_dir,
  82. query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
  83. use_fp16=torch.cuda.is_available())
  84. self._model = DefaultEmbedding._model
  85. self._model_name = DefaultEmbedding._model_name
  86. def encode(self, texts: list):
  87. batch_size = 16
  88. texts = [truncate(t, 2048) for t in texts]
  89. token_count = 0
  90. for t in texts:
  91. token_count += num_tokens_from_string(t)
  92. ress = []
  93. for i in range(0, len(texts), batch_size):
  94. ress.extend(self._model.encode(texts[i:i + batch_size]).tolist())
  95. return np.array(ress), token_count
  96. def encode_queries(self, text: str):
  97. token_count = num_tokens_from_string(text)
  98. return self._model.encode_queries([text]).tolist()[0], token_count
  99. class OpenAIEmbed(Base):
  100. def __init__(self, key, model_name="text-embedding-ada-002",
  101. base_url="https://api.openai.com/v1"):
  102. if not base_url:
  103. base_url = "https://api.openai.com/v1"
  104. self.client = OpenAI(api_key=key, base_url=base_url)
  105. self.model_name = model_name
  106. def encode(self, texts: list):
  107. # OpenAI requires batch size <=16
  108. batch_size = 16
  109. texts = [truncate(t, 8191) for t in texts]
  110. ress = []
  111. total_tokens = 0
  112. for i in range(0, len(texts), batch_size):
  113. res = self.client.embeddings.create(input=texts[i:i + batch_size],
  114. model=self.model_name)
  115. try:
  116. ress.extend([d.embedding for d in res.data])
  117. total_tokens += self.total_token_count(res)
  118. except Exception as _e:
  119. log_exception(_e, res)
  120. return np.array(ress), total_tokens
  121. def encode_queries(self, text):
  122. res = self.client.embeddings.create(input=[truncate(text, 8191)],
  123. model=self.model_name)
  124. return np.array(res.data[0].embedding), self.total_token_count(res)
  125. class LocalAIEmbed(Base):
  126. def __init__(self, key, model_name, base_url):
  127. if not base_url:
  128. raise ValueError("Local embedding model url cannot be None")
  129. base_url = urljoin(base_url, "v1")
  130. self.client = OpenAI(api_key="empty", base_url=base_url)
  131. self.model_name = model_name.split("___")[0]
  132. def encode(self, texts: list):
  133. batch_size = 16
  134. ress = []
  135. for i in range(0, len(texts), batch_size):
  136. res = self.client.embeddings.create(input=texts[i:i + batch_size], model=self.model_name)
  137. try:
  138. ress.extend([d.embedding for d in res.data])
  139. except Exception as _e:
  140. log_exception(_e, res)
  141. # local embedding for LmStudio donot count tokens
  142. return np.array(ress), 1024
  143. def encode_queries(self, text):
  144. embds, cnt = self.encode([text])
  145. return np.array(embds[0]), cnt
  146. class AzureEmbed(OpenAIEmbed):
  147. def __init__(self, key, model_name, **kwargs):
  148. from openai.lib.azure import AzureOpenAI
  149. api_key = json.loads(key).get('api_key', '')
  150. api_version = json.loads(key).get('api_version', '2024-02-01')
  151. self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version)
  152. self.model_name = model_name
  153. class BaiChuanEmbed(OpenAIEmbed):
  154. def __init__(self, key,
  155. model_name='Baichuan-Text-Embedding',
  156. base_url='https://api.baichuan-ai.com/v1'):
  157. if not base_url:
  158. base_url = "https://api.baichuan-ai.com/v1"
  159. super().__init__(key, model_name, base_url)
  160. class QWenEmbed(Base):
  161. def __init__(self, key, model_name="text_embedding_v2", **kwargs):
  162. self.key = key
  163. self.model_name = model_name
  164. def encode(self, texts: list):
  165. import dashscope
  166. batch_size = 4
  167. res = []
  168. token_count = 0
  169. texts = [truncate(t, 2048) for t in texts]
  170. for i in range(0, len(texts), batch_size):
  171. resp = dashscope.TextEmbedding.call(
  172. model=self.model_name,
  173. input=texts[i:i + batch_size],
  174. api_key=self.key,
  175. text_type="document"
  176. )
  177. try:
  178. embds = [[] for _ in range(len(resp["output"]["embeddings"]))]
  179. for e in resp["output"]["embeddings"]:
  180. embds[e["text_index"]] = e["embedding"]
  181. res.extend(embds)
  182. token_count += self.total_token_count(resp)
  183. except Exception as _e:
  184. log_exception(_e, resp)
  185. raise
  186. return np.array(res), token_count
  187. def encode_queries(self, text):
  188. resp = dashscope.TextEmbedding.call(
  189. model=self.model_name,
  190. input=text[:2048],
  191. api_key=self.key,
  192. text_type="query"
  193. )
  194. try:
  195. return np.array(resp["output"]["embeddings"][0]
  196. ["embedding"]), self.total_token_count(resp)
  197. except Exception as _e:
  198. log_exception(_e, resp)
  199. class ZhipuEmbed(Base):
  200. def __init__(self, key, model_name="embedding-2", **kwargs):
  201. self.client = ZhipuAI(api_key=key)
  202. self.model_name = model_name
  203. def encode(self, texts: list):
  204. arr = []
  205. tks_num = 0
  206. MAX_LEN = -1
  207. if self.model_name.lower() == "embedding-2":
  208. MAX_LEN = 512
  209. if self.model_name.lower() == "embedding-3":
  210. MAX_LEN = 3072
  211. if MAX_LEN > 0:
  212. texts = [truncate(t, MAX_LEN) for t in texts]
  213. for txt in texts:
  214. res = self.client.embeddings.create(input=txt,
  215. model=self.model_name)
  216. try:
  217. arr.append(res.data[0].embedding)
  218. tks_num += self.total_token_count(res)
  219. except Exception as _e:
  220. log_exception(_e, res)
  221. return np.array(arr), tks_num
  222. def encode_queries(self, text):
  223. res = self.client.embeddings.create(input=text,
  224. model=self.model_name)
  225. try:
  226. return np.array(res.data[0].embedding), self.total_token_count(res)
  227. except Exception as _e:
  228. log_exception(_e, res)
  229. class OllamaEmbed(Base):
  230. def __init__(self, key, model_name, **kwargs):
  231. self.client = Client(host=kwargs["base_url"]) if not key or key == "x" else \
  232. Client(host=kwargs["base_url"], headers={"Authorization": f"Bear {key}"})
  233. self.model_name = model_name
  234. def encode(self, texts: list):
  235. arr = []
  236. tks_num = 0
  237. for txt in texts:
  238. res = self.client.embeddings(prompt=txt,
  239. model=self.model_name,
  240. options={"use_mmap": True})
  241. try:
  242. arr.append(res["embedding"])
  243. except Exception as _e:
  244. log_exception(_e, res)
  245. tks_num += 128
  246. return np.array(arr), tks_num
  247. def encode_queries(self, text):
  248. res = self.client.embeddings(prompt=text,
  249. model=self.model_name,
  250. options={"use_mmap": True})
  251. try:
  252. return np.array(res["embedding"]), 128
  253. except Exception as _e:
  254. log_exception(_e, res)
  255. class FastEmbed(DefaultEmbedding):
  256. def __init__(
  257. self,
  258. key: str | None = None,
  259. model_name: str = "BAAI/bge-small-en-v1.5",
  260. cache_dir: str | None = None,
  261. threads: int | None = None,
  262. **kwargs,
  263. ):
  264. if not settings.LIGHTEN:
  265. with FastEmbed._model_lock:
  266. from fastembed import TextEmbedding
  267. if not DefaultEmbedding._model or model_name != DefaultEmbedding._model_name:
  268. try:
  269. DefaultEmbedding._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
  270. DefaultEmbedding._model_name = model_name
  271. except Exception:
  272. cache_dir = snapshot_download(repo_id="BAAI/bge-small-en-v1.5",
  273. local_dir=os.path.join(get_home_cache_dir(),
  274. re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
  275. local_dir_use_symlinks=False)
  276. DefaultEmbedding._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
  277. self._model = DefaultEmbedding._model
  278. self._model_name = model_name
  279. def encode(self, texts: list):
  280. # Using the internal tokenizer to encode the texts and get the total
  281. # number of tokens
  282. encodings = self._model.model.tokenizer.encode_batch(texts)
  283. total_tokens = sum(len(e) for e in encodings)
  284. embeddings = [e.tolist() for e in self._model.embed(texts, batch_size=16)]
  285. return np.array(embeddings), total_tokens
  286. def encode_queries(self, text: str):
  287. # Using the internal tokenizer to encode the texts and get the total
  288. # number of tokens
  289. encoding = self._model.model.tokenizer.encode(text)
  290. embedding = next(self._model.query_embed(text)).tolist()
  291. return np.array(embedding), len(encoding.ids)
  292. class XinferenceEmbed(Base):
  293. def __init__(self, key, model_name="", base_url=""):
  294. base_url = urljoin(base_url, "v1")
  295. self.client = OpenAI(api_key=key, base_url=base_url)
  296. self.model_name = model_name
  297. def encode(self, texts: list):
  298. batch_size = 16
  299. ress = []
  300. total_tokens = 0
  301. for i in range(0, len(texts), batch_size):
  302. res = self.client.embeddings.create(input=texts[i:i + batch_size], model=self.model_name)
  303. try:
  304. ress.extend([d.embedding for d in res.data])
  305. total_tokens += self.total_token_count(res)
  306. except Exception as _e:
  307. log_exception(_e, res)
  308. return np.array(ress), total_tokens
  309. def encode_queries(self, text):
  310. res = self.client.embeddings.create(input=[text],
  311. model=self.model_name)
  312. try:
  313. return np.array(res.data[0].embedding), self.total_token_count(res)
  314. except Exception as _e:
  315. log_exception(_e, res)
  316. class YoudaoEmbed(Base):
  317. _client = None
  318. def __init__(self, key=None, model_name="maidalun1020/bce-embedding-base_v1", **kwargs):
  319. if not settings.LIGHTEN and not YoudaoEmbed._client:
  320. from BCEmbedding import EmbeddingModel as qanthing
  321. try:
  322. logging.info("LOADING BCE...")
  323. YoudaoEmbed._client = qanthing(model_name_or_path=os.path.join(
  324. get_home_cache_dir(),
  325. "bce-embedding-base_v1"))
  326. except Exception:
  327. YoudaoEmbed._client = qanthing(
  328. model_name_or_path=model_name.replace(
  329. "maidalun1020", "InfiniFlow"))
  330. def encode(self, texts: list):
  331. batch_size = 10
  332. res = []
  333. token_count = 0
  334. for t in texts:
  335. token_count += num_tokens_from_string(t)
  336. for i in range(0, len(texts), batch_size):
  337. embds = YoudaoEmbed._client.encode(texts[i:i + batch_size])
  338. res.extend(embds)
  339. return np.array(res), token_count
  340. def encode_queries(self, text):
  341. embds = YoudaoEmbed._client.encode([text])
  342. return np.array(embds[0]), num_tokens_from_string(text)
  343. class JinaEmbed(Base):
  344. def __init__(self, key, model_name="jina-embeddings-v3",
  345. base_url="https://api.jina.ai/v1/embeddings"):
  346. self.base_url = "https://api.jina.ai/v1/embeddings"
  347. self.headers = {
  348. "Content-Type": "application/json",
  349. "Authorization": f"Bearer {key}"
  350. }
  351. self.model_name = model_name
  352. def encode(self, texts: list):
  353. texts = [truncate(t, 8196) for t in texts]
  354. batch_size = 16
  355. ress = []
  356. token_count = 0
  357. for i in range(0, len(texts), batch_size):
  358. data = {
  359. "model": self.model_name,
  360. "input": texts[i:i + batch_size],
  361. 'encoding_type': 'float'
  362. }
  363. response = requests.post(self.base_url, headers=self.headers, json=data)
  364. try:
  365. res = response.json()
  366. ress.extend([d["embedding"] for d in res["data"]])
  367. token_count += self.total_token_count(res)
  368. except Exception as _e:
  369. log_exception(_e, response)
  370. return np.array(ress), token_count
  371. def encode_queries(self, text):
  372. embds, cnt = self.encode([text])
  373. return np.array(embds[0]), cnt
  374. class InfinityEmbed(Base):
  375. _model = None
  376. def __init__(
  377. self,
  378. model_names: list[str] = ("BAAI/bge-small-en-v1.5",),
  379. engine_kwargs: dict = {},
  380. key = None,
  381. ):
  382. from infinity_emb import EngineArgs
  383. from infinity_emb.engine import AsyncEngineArray
  384. self._default_model = model_names[0]
  385. self.engine_array = AsyncEngineArray.from_args([EngineArgs(model_name_or_path = model_name, **engine_kwargs) for model_name in model_names])
  386. async def _embed(self, sentences: list[str], model_name: str = ""):
  387. if not model_name:
  388. model_name = self._default_model
  389. engine = self.engine_array[model_name]
  390. was_already_running = engine.is_running
  391. if not was_already_running:
  392. await engine.astart()
  393. embeddings, usage = await engine.embed(sentences=sentences)
  394. if not was_already_running:
  395. await engine.astop()
  396. return embeddings, usage
  397. def encode(self, texts: list[str], model_name: str = "") -> tuple[np.ndarray, int]:
  398. # Using the internal tokenizer to encode the texts and get the total
  399. # number of tokens
  400. embeddings, usage = asyncio.run(self._embed(texts, model_name))
  401. return np.array(embeddings), usage
  402. def encode_queries(self, text: str) -> tuple[np.ndarray, int]:
  403. # Using the internal tokenizer to encode the texts and get the total
  404. # number of tokens
  405. return self.encode([text])
  406. class MistralEmbed(Base):
  407. def __init__(self, key, model_name="mistral-embed",
  408. base_url=None):
  409. from mistralai.client import MistralClient
  410. self.client = MistralClient(api_key=key)
  411. self.model_name = model_name
  412. def encode(self, texts: list):
  413. texts = [truncate(t, 8196) for t in texts]
  414. batch_size = 16
  415. ress = []
  416. token_count = 0
  417. for i in range(0, len(texts), batch_size):
  418. res = self.client.embeddings(input=texts[i:i + batch_size],
  419. model=self.model_name)
  420. try:
  421. ress.extend([d.embedding for d in res.data])
  422. token_count += self.total_token_count(res)
  423. except Exception as _e:
  424. log_exception(_e, res)
  425. return np.array(ress), token_count
  426. def encode_queries(self, text):
  427. res = self.client.embeddings(input=[truncate(text, 8196)],
  428. model=self.model_name)
  429. try:
  430. return np.array(res.data[0].embedding), self.total_token_count(res)
  431. except Exception as _e:
  432. log_exception(_e, res)
  433. class BedrockEmbed(Base):
  434. def __init__(self, key, model_name,
  435. **kwargs):
  436. import boto3
  437. self.bedrock_ak = json.loads(key).get('bedrock_ak', '')
  438. self.bedrock_sk = json.loads(key).get('bedrock_sk', '')
  439. self.bedrock_region = json.loads(key).get('bedrock_region', '')
  440. self.model_name = model_name
  441. if self.bedrock_ak == '' or self.bedrock_sk == '' or self.bedrock_region == '':
  442. # Try to create a client using the default credentials (AWS_PROFILE, AWS_DEFAULT_REGION, etc.)
  443. self.client = boto3.client('bedrock-runtime')
  444. else:
  445. self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region,
  446. aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
  447. def encode(self, texts: list):
  448. texts = [truncate(t, 8196) for t in texts]
  449. embeddings = []
  450. token_count = 0
  451. for text in texts:
  452. if self.model_name.split('.')[0] == 'amazon':
  453. body = {"inputText": text}
  454. elif self.model_name.split('.')[0] == 'cohere':
  455. body = {"texts": [text], "input_type": 'search_document'}
  456. response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
  457. try:
  458. model_response = json.loads(response["body"].read())
  459. embeddings.extend([model_response["embedding"]])
  460. token_count += num_tokens_from_string(text)
  461. except Exception as _e:
  462. log_exception(_e, response)
  463. return np.array(embeddings), token_count
  464. def encode_queries(self, text):
  465. embeddings = []
  466. token_count = num_tokens_from_string(text)
  467. if self.model_name.split('.')[0] == 'amazon':
  468. body = {"inputText": truncate(text, 8196)}
  469. elif self.model_name.split('.')[0] == 'cohere':
  470. body = {"texts": [truncate(text, 8196)], "input_type": 'search_query'}
  471. response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
  472. try:
  473. model_response = json.loads(response["body"].read())
  474. embeddings.extend(model_response["embedding"])
  475. except Exception as _e:
  476. log_exception(_e, response)
  477. return np.array(embeddings), token_count
  478. class GeminiEmbed(Base):
  479. def __init__(self, key, model_name='models/text-embedding-004',
  480. **kwargs):
  481. self.key = key
  482. self.model_name = 'models/' + model_name
  483. def encode(self, texts: list):
  484. texts = [truncate(t, 2048) for t in texts]
  485. token_count = sum(num_tokens_from_string(text) for text in texts)
  486. genai.configure(api_key=self.key)
  487. batch_size = 16
  488. ress = []
  489. for i in range(0, len(texts), batch_size):
  490. result = genai.embed_content(
  491. model=self.model_name,
  492. content=texts[i: i + batch_size],
  493. task_type="retrieval_document",
  494. title="Embedding of single string")
  495. try:
  496. ress.extend(result['embedding'])
  497. except Exception as _e:
  498. log_exception(_e, result)
  499. return np.array(ress),token_count
  500. def encode_queries(self, text):
  501. genai.configure(api_key=self.key)
  502. result = genai.embed_content(
  503. model=self.model_name,
  504. content=truncate(text,2048),
  505. task_type="retrieval_document",
  506. title="Embedding of single string")
  507. token_count = num_tokens_from_string(text)
  508. try:
  509. return np.array(result['embedding']), token_count
  510. except Exception as _e:
  511. log_exception(_e, result)
  512. class NvidiaEmbed(Base):
  513. def __init__(
  514. self, key, model_name, base_url="https://integrate.api.nvidia.com/v1/embeddings"
  515. ):
  516. if not base_url:
  517. base_url = "https://integrate.api.nvidia.com/v1/embeddings"
  518. self.api_key = key
  519. self.base_url = base_url
  520. self.headers = {
  521. "accept": "application/json",
  522. "Content-Type": "application/json",
  523. "authorization": f"Bearer {self.api_key}",
  524. }
  525. self.model_name = model_name
  526. if model_name == "nvidia/embed-qa-4":
  527. self.base_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/embeddings"
  528. self.model_name = "NV-Embed-QA"
  529. if model_name == "snowflake/arctic-embed-l":
  530. self.base_url = "https://ai.api.nvidia.com/v1/retrieval/snowflake/arctic-embed-l/embeddings"
  531. def encode(self, texts: list):
  532. batch_size = 16
  533. ress = []
  534. token_count = 0
  535. for i in range(0, len(texts), batch_size):
  536. payload = {
  537. "input": texts[i : i + batch_size],
  538. "input_type": "query",
  539. "model": self.model_name,
  540. "encoding_format": "float",
  541. "truncate": "END",
  542. }
  543. response = requests.post(self.base_url, headers=self.headers, json=payload)
  544. try:
  545. res = response.json()
  546. except Exception as _e:
  547. log_exception(_e, response)
  548. ress.extend([d["embedding"] for d in res["data"]])
  549. token_count += self.total_token_count(res)
  550. return np.array(ress), token_count
  551. def encode_queries(self, text):
  552. embds, cnt = self.encode([text])
  553. return np.array(embds[0]), cnt
  554. class LmStudioEmbed(LocalAIEmbed):
  555. def __init__(self, key, model_name, base_url):
  556. if not base_url:
  557. raise ValueError("Local llm url cannot be None")
  558. base_url = urljoin(base_url, "v1")
  559. self.client = OpenAI(api_key="lm-studio", base_url=base_url)
  560. self.model_name = model_name
  561. class OpenAI_APIEmbed(OpenAIEmbed):
  562. def __init__(self, key, model_name, base_url):
  563. if not base_url:
  564. raise ValueError("url cannot be None")
  565. base_url = urljoin(base_url, "v1")
  566. self.client = OpenAI(api_key=key, base_url=base_url)
  567. self.model_name = model_name.split("___")[0]
  568. class CoHereEmbed(Base):
  569. def __init__(self, key, model_name, base_url=None):
  570. from cohere import Client
  571. self.client = Client(api_key=key)
  572. self.model_name = model_name
  573. def encode(self, texts: list):
  574. batch_size = 16
  575. ress = []
  576. token_count = 0
  577. for i in range(0, len(texts), batch_size):
  578. res = self.client.embed(
  579. texts=texts[i : i + batch_size],
  580. model=self.model_name,
  581. input_type="search_document",
  582. embedding_types=["float"],
  583. )
  584. try:
  585. ress.extend([d for d in res.embeddings.float])
  586. token_count += res.meta.billed_units.input_tokens
  587. except Exception as _e:
  588. log_exception(_e, res)
  589. return np.array(ress), token_count
  590. def encode_queries(self, text):
  591. res = self.client.embed(
  592. texts=[text],
  593. model=self.model_name,
  594. input_type="search_query",
  595. embedding_types=["float"],
  596. )
  597. try:
  598. return np.array(res.embeddings.float[0]), int(res.meta.billed_units.input_tokens)
  599. except Exception as _e:
  600. log_exception(_e, res)
  601. class TogetherAIEmbed(OpenAIEmbed):
  602. def __init__(self, key, model_name, base_url="https://api.together.xyz/v1"):
  603. if not base_url:
  604. base_url = "https://api.together.xyz/v1"
  605. super().__init__(key, model_name, base_url=base_url)
  606. class PerfXCloudEmbed(OpenAIEmbed):
  607. def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1"):
  608. if not base_url:
  609. base_url = "https://cloud.perfxlab.cn/v1"
  610. super().__init__(key, model_name, base_url)
  611. class UpstageEmbed(OpenAIEmbed):
  612. def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar"):
  613. if not base_url:
  614. base_url = "https://api.upstage.ai/v1/solar"
  615. super().__init__(key, model_name, base_url)
  616. class SILICONFLOWEmbed(Base):
  617. def __init__(
  618. self, key, model_name, base_url="https://api.siliconflow.cn/v1/embeddings"
  619. ):
  620. if not base_url:
  621. base_url = "https://api.siliconflow.cn/v1/embeddings"
  622. self.headers = {
  623. "accept": "application/json",
  624. "content-type": "application/json",
  625. "authorization": f"Bearer {key}",
  626. }
  627. self.base_url = base_url
  628. self.model_name = model_name
  629. def encode(self, texts: list):
  630. batch_size = 16
  631. ress = []
  632. token_count = 0
  633. for i in range(0, len(texts), batch_size):
  634. texts_batch = texts[i : i + batch_size]
  635. payload = {
  636. "model": self.model_name,
  637. "input": texts_batch,
  638. "encoding_format": "float",
  639. }
  640. response = requests.post(self.base_url, json=payload, headers=self.headers)
  641. try:
  642. res = response.json()
  643. ress.extend([d["embedding"] for d in res["data"]])
  644. token_count += self.total_token_count(res)
  645. except Exception as _e:
  646. log_exception(_e, response)
  647. return np.array(ress), token_count
  648. def encode_queries(self, text):
  649. payload = {
  650. "model": self.model_name,
  651. "input": text,
  652. "encoding_format": "float",
  653. }
  654. response = requests.post(self.base_url, json=payload, headers=self.headers)
  655. try:
  656. res = response.json()
  657. return np.array(res["data"][0]["embedding"]), self.total_token_count(res)
  658. except Exception as _e:
  659. log_exception(_e, response)
  660. class ReplicateEmbed(Base):
  661. def __init__(self, key, model_name, base_url=None):
  662. from replicate.client import Client
  663. self.model_name = model_name
  664. self.client = Client(api_token=key)
  665. def encode(self, texts: list):
  666. batch_size = 16
  667. token_count = sum([num_tokens_from_string(text) for text in texts])
  668. ress = []
  669. for i in range(0, len(texts), batch_size):
  670. res = self.client.run(self.model_name, input={"texts": texts[i : i + batch_size]})
  671. ress.extend(res)
  672. return np.array(ress), token_count
  673. def encode_queries(self, text):
  674. res = self.client.embed(self.model_name, input={"texts": [text]})
  675. return np.array(res), num_tokens_from_string(text)
  676. class BaiduYiyanEmbed(Base):
  677. def __init__(self, key, model_name, base_url=None):
  678. import qianfan
  679. key = json.loads(key)
  680. ak = key.get("yiyan_ak", "")
  681. sk = key.get("yiyan_sk", "")
  682. self.client = qianfan.Embedding(ak=ak, sk=sk)
  683. self.model_name = model_name
  684. def encode(self, texts: list, batch_size=16):
  685. res = self.client.do(model=self.model_name, texts=texts).body
  686. try:
  687. return (
  688. np.array([r["embedding"] for r in res["data"]]),
  689. self.total_token_count(res),
  690. )
  691. except Exception as _e:
  692. log_exception(_e, res)
  693. def encode_queries(self, text):
  694. res = self.client.do(model=self.model_name, texts=[text]).body
  695. try:
  696. return (
  697. np.array([r["embedding"] for r in res["data"]]),
  698. self.total_token_count(res),
  699. )
  700. except Exception as _e:
  701. log_exception(_e, res)
  702. class VoyageEmbed(Base):
  703. def __init__(self, key, model_name, base_url=None):
  704. import voyageai
  705. self.client = voyageai.Client(api_key=key)
  706. self.model_name = model_name
  707. def encode(self, texts: list):
  708. batch_size = 16
  709. ress = []
  710. token_count = 0
  711. for i in range(0, len(texts), batch_size):
  712. res = self.client.embed(
  713. texts=texts[i : i + batch_size], model=self.model_name, input_type="document"
  714. )
  715. try:
  716. ress.extend(res.embeddings)
  717. token_count += res.total_tokens
  718. except Exception as _e:
  719. log_exception(_e, res)
  720. return np.array(ress), token_count
  721. def encode_queries(self, text):
  722. res = self.client.embed(
  723. texts=text, model=self.model_name, input_type="query"
  724. )
  725. try:
  726. return np.array(res.embeddings)[0], res.total_tokens
  727. except Exception as _e:
  728. log_exception(_e, res)
  729. class HuggingFaceEmbed(Base):
  730. def __init__(self, key, model_name, base_url=None):
  731. if not model_name:
  732. raise ValueError("Model name cannot be None")
  733. self.key = key
  734. self.model_name = model_name.split("___")[0]
  735. self.base_url = base_url or "http://127.0.0.1:8080"
  736. def encode(self, texts: list):
  737. embeddings = []
  738. for text in texts:
  739. response = requests.post(
  740. f"{self.base_url}/embed",
  741. json={"inputs": text},
  742. headers={'Content-Type': 'application/json'}
  743. )
  744. if response.status_code == 200:
  745. embedding = response.json()
  746. embeddings.append(embedding[0])
  747. else:
  748. raise Exception(f"Error: {response.status_code} - {response.text}")
  749. return np.array(embeddings), sum([num_tokens_from_string(text) for text in texts])
  750. def encode_queries(self, text):
  751. response = requests.post(
  752. f"{self.base_url}/embed",
  753. json={"inputs": text},
  754. headers={'Content-Type': 'application/json'}
  755. )
  756. if response.status_code == 200:
  757. embedding = response.json()
  758. return np.array(embedding[0]), num_tokens_from_string(text)
  759. else:
  760. raise Exception(f"Error: {response.status_code} - {response.text}")
  761. class VolcEngineEmbed(OpenAIEmbed):
  762. def __init__(self, key, model_name, base_url="https://ark.cn-beijing.volces.com/api/v3"):
  763. if not base_url:
  764. base_url = "https://ark.cn-beijing.volces.com/api/v3"
  765. ark_api_key = json.loads(key).get('ark_api_key', '')
  766. model_name = json.loads(key).get('ep_id', '') + json.loads(key).get('endpoint_id', '')
  767. super().__init__(ark_api_key,model_name,base_url)
  768. class GPUStackEmbed(OpenAIEmbed):
  769. def __init__(self, key, model_name, base_url):
  770. if not base_url:
  771. raise ValueError("url cannot be None")
  772. base_url = urljoin(base_url, "v1")
  773. self.client = OpenAI(api_key=key, base_url=base_url)
  774. self.model_name = model_name
  775. class NovitaEmbed(SILICONFLOWEmbed):
  776. def __init__(self, key, model_name, base_url="https://api.novita.ai/v3/openai/embeddings"):
  777. super().__init__(key, model_name, base_url)
  778. class GiteeEmbed(SILICONFLOWEmbed):
  779. def __init__(self, key, model_name, base_url="https://ai.gitee.com/v1/embeddings"):
  780. super().__init__(key, model_name, base_url)