You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

chat.py 16KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import logging
  17. from flask import request
  18. from api import settings
  19. from api.db import StatusEnum
  20. from api.db.services.dialog_service import DialogService
  21. from api.db.services.knowledgebase_service import KnowledgebaseService
  22. from api.db.services.llm_service import TenantLLMService
  23. from api.db.services.user_service import TenantService
  24. from api.utils import get_uuid
  25. from api.utils.api_utils import get_error_data_result, token_required, get_result, check_duplicate_ids
  26. @manager.route('/chats', methods=['POST']) # noqa: F821
  27. @token_required
  28. def create(tenant_id):
  29. req = request.json
  30. ids = [i for i in req.get("dataset_ids", []) if i]
  31. for kb_id in ids:
  32. kbs = KnowledgebaseService.accessible(kb_id=kb_id, user_id=tenant_id)
  33. if not kbs:
  34. return get_error_data_result(f"You don't own the dataset {kb_id}")
  35. kbs = KnowledgebaseService.query(id=kb_id)
  36. kb = kbs[0]
  37. if kb.chunk_num == 0:
  38. return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file")
  39. kbs = KnowledgebaseService.get_by_ids(ids) if ids else []
  40. embd_ids = [TenantLLMService.split_model_name_and_factory(kb.embd_id)[0] for kb in kbs] # remove vendor suffix for comparison
  41. embd_count = list(set(embd_ids))
  42. if len(embd_count) > 1:
  43. return get_result(message='Datasets use different embedding models."',
  44. code=settings.RetCode.AUTHENTICATION_ERROR)
  45. req["kb_ids"] = ids
  46. # llm
  47. llm = req.get("llm")
  48. if llm:
  49. if "model_name" in llm:
  50. req["llm_id"] = llm.pop("model_name")
  51. if not TenantLLMService.query(tenant_id=tenant_id, llm_name=req["llm_id"], model_type="chat"):
  52. return get_error_data_result(f"`model_name` {req.get('llm_id')} doesn't exist")
  53. req["llm_setting"] = req.pop("llm")
  54. e, tenant = TenantService.get_by_id(tenant_id)
  55. if not e:
  56. return get_error_data_result(message="Tenant not found!")
  57. # prompt
  58. prompt = req.get("prompt")
  59. key_mapping = {"parameters": "variables",
  60. "prologue": "opener",
  61. "quote": "show_quote",
  62. "system": "prompt",
  63. "rerank_id": "rerank_model",
  64. "vector_similarity_weight": "keywords_similarity_weight"}
  65. key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id","top_k"]
  66. if prompt:
  67. for new_key, old_key in key_mapping.items():
  68. if old_key in prompt:
  69. prompt[new_key] = prompt.pop(old_key)
  70. for key in key_list:
  71. if key in prompt:
  72. req[key] = prompt.pop(key)
  73. req["prompt_config"] = req.pop("prompt")
  74. # init
  75. req["id"] = get_uuid()
  76. req["description"] = req.get("description", "A helpful Assistant")
  77. req["icon"] = req.get("avatar", "")
  78. req["top_n"] = req.get("top_n", 6)
  79. req["top_k"] = req.get("top_k", 1024)
  80. req["rerank_id"] = req.get("rerank_id", "")
  81. if req.get("rerank_id"):
  82. value_rerank_model = ["BAAI/bge-reranker-v2-m3", "maidalun1020/bce-reranker-base_v1"]
  83. if req["rerank_id"] not in value_rerank_model and not TenantLLMService.query(tenant_id=tenant_id,
  84. llm_name=req.get("rerank_id"),
  85. model_type="rerank"):
  86. return get_error_data_result(f"`rerank_model` {req.get('rerank_id')} doesn't exist")
  87. if not req.get("llm_id"):
  88. req["llm_id"] = tenant.llm_id
  89. if not req.get("name"):
  90. return get_error_data_result(message="`name` is required.")
  91. if DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value):
  92. return get_error_data_result(message="Duplicated chat name in creating chat.")
  93. # tenant_id
  94. if req.get("tenant_id"):
  95. return get_error_data_result(message="`tenant_id` must not be provided.")
  96. req["tenant_id"] = tenant_id
  97. # prompt more parameter
  98. default_prompt = {
  99. "system": """You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence "The answer you are looking for is not found in the knowledge base!" Answers need to consider chat history.
  100. Here is the knowledge base:
  101. {knowledge}
  102. The above is the knowledge base.""",
  103. "prologue": "Hi! I'm your assistant, what can I do for you?",
  104. "parameters": [
  105. {"key": "knowledge", "optional": False}
  106. ],
  107. "empty_response": "Sorry! No relevant content was found in the knowledge base!",
  108. "quote": True,
  109. "tts": False,
  110. "refine_multiturn": True
  111. }
  112. key_list_2 = ["system", "prologue", "parameters", "empty_response", "quote", "tts", "refine_multiturn"]
  113. if "prompt_config" not in req:
  114. req['prompt_config'] = {}
  115. for key in key_list_2:
  116. temp = req['prompt_config'].get(key)
  117. if (not temp and key == 'system') or (key not in req["prompt_config"]):
  118. req['prompt_config'][key] = default_prompt[key]
  119. for p in req['prompt_config']["parameters"]:
  120. if p["optional"]:
  121. continue
  122. if req['prompt_config']["system"].find("{%s}" % p["key"]) < 0:
  123. return get_error_data_result(
  124. message="Parameter '{}' is not used".format(p["key"]))
  125. # save
  126. if not DialogService.save(**req):
  127. return get_error_data_result(message="Fail to new a chat!")
  128. # response
  129. e, res = DialogService.get_by_id(req["id"])
  130. if not e:
  131. return get_error_data_result(message="Fail to new a chat!")
  132. res = res.to_json()
  133. renamed_dict = {}
  134. for key, value in res["prompt_config"].items():
  135. new_key = key_mapping.get(key, key)
  136. renamed_dict[new_key] = value
  137. res["prompt"] = renamed_dict
  138. del res["prompt_config"]
  139. new_dict = {"similarity_threshold": res["similarity_threshold"],
  140. "keywords_similarity_weight": 1-res["vector_similarity_weight"],
  141. "top_n": res["top_n"],
  142. "rerank_model": res['rerank_id']}
  143. res["prompt"].update(new_dict)
  144. for key in key_list:
  145. del res[key]
  146. res["llm"] = res.pop("llm_setting")
  147. res["llm"]["model_name"] = res.pop("llm_id")
  148. del res["kb_ids"]
  149. res["dataset_ids"] = req["dataset_ids"]
  150. res["avatar"] = res.pop("icon")
  151. return get_result(data=res)
  152. @manager.route('/chats/<chat_id>', methods=['PUT']) # noqa: F821
  153. @token_required
  154. def update(tenant_id, chat_id):
  155. if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
  156. return get_error_data_result(message='You do not own the chat')
  157. req = request.json
  158. ids = req.get("dataset_ids")
  159. if "show_quotation" in req:
  160. req["do_refer"] = req.pop("show_quotation")
  161. if "dataset_ids" in req:
  162. if not ids:
  163. return get_error_data_result("`dataset_ids` can't be empty")
  164. if ids:
  165. for kb_id in ids:
  166. kbs = KnowledgebaseService.accessible(kb_id=kb_id, user_id=tenant_id)
  167. if not kbs:
  168. return get_error_data_result(f"You don't own the dataset {kb_id}")
  169. kbs = KnowledgebaseService.query(id=kb_id)
  170. kb = kbs[0]
  171. if kb.chunk_num == 0:
  172. return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file")
  173. kbs = KnowledgebaseService.get_by_ids(ids)
  174. embd_ids = [TenantLLMService.split_model_name_and_factory(kb.embd_id)[0] for kb in kbs] # remove vendor suffix for comparison
  175. embd_count = list(set(embd_ids))
  176. if len(embd_count) != 1:
  177. return get_result(
  178. message='Datasets use different embedding models."',
  179. code=settings.RetCode.AUTHENTICATION_ERROR)
  180. req["kb_ids"] = ids
  181. llm = req.get("llm")
  182. if llm:
  183. if "model_name" in llm:
  184. req["llm_id"] = llm.pop("model_name")
  185. if not TenantLLMService.query(tenant_id=tenant_id, llm_name=req["llm_id"], model_type="chat"):
  186. return get_error_data_result(f"`model_name` {req.get('llm_id')} doesn't exist")
  187. req["llm_setting"] = req.pop("llm")
  188. e, tenant = TenantService.get_by_id(tenant_id)
  189. if not e:
  190. return get_error_data_result(message="Tenant not found!")
  191. # prompt
  192. prompt = req.get("prompt")
  193. key_mapping = {"parameters": "variables",
  194. "prologue": "opener",
  195. "quote": "show_quote",
  196. "system": "prompt",
  197. "rerank_id": "rerank_model",
  198. "vector_similarity_weight": "keywords_similarity_weight"}
  199. key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id","top_k"]
  200. if prompt:
  201. for new_key, old_key in key_mapping.items():
  202. if old_key in prompt:
  203. prompt[new_key] = prompt.pop(old_key)
  204. for key in key_list:
  205. if key in prompt:
  206. req[key] = prompt.pop(key)
  207. req["prompt_config"] = req.pop("prompt")
  208. e, res = DialogService.get_by_id(chat_id)
  209. res = res.to_json()
  210. if req.get("rerank_id"):
  211. value_rerank_model = ["BAAI/bge-reranker-v2-m3", "maidalun1020/bce-reranker-base_v1"]
  212. if req["rerank_id"] not in value_rerank_model and not TenantLLMService.query(tenant_id=tenant_id,
  213. llm_name=req.get("rerank_id"),
  214. model_type="rerank"):
  215. return get_error_data_result(f"`rerank_model` {req.get('rerank_id')} doesn't exist")
  216. if "name" in req:
  217. if not req.get("name"):
  218. return get_error_data_result(message="`name` cannot be empty.")
  219. if req["name"].lower() != res["name"].lower() \
  220. and len(
  221. DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value)) > 0:
  222. return get_error_data_result(message="Duplicated chat name in updating chat.")
  223. if "prompt_config" in req:
  224. res["prompt_config"].update(req["prompt_config"])
  225. for p in res["prompt_config"]["parameters"]:
  226. if p["optional"]:
  227. continue
  228. if res["prompt_config"]["system"].find("{%s}" % p["key"]) < 0:
  229. return get_error_data_result(message="Parameter '{}' is not used".format(p["key"]))
  230. if "llm_setting" in req:
  231. res["llm_setting"].update(req["llm_setting"])
  232. req["prompt_config"] = res["prompt_config"]
  233. req["llm_setting"] = res["llm_setting"]
  234. # avatar
  235. if "avatar" in req:
  236. req["icon"] = req.pop("avatar")
  237. if "dataset_ids" in req:
  238. req.pop("dataset_ids")
  239. if not DialogService.update_by_id(chat_id, req):
  240. return get_error_data_result(message="Chat not found!")
  241. return get_result()
  242. @manager.route('/chats', methods=['DELETE']) # noqa: F821
  243. @token_required
  244. def delete(tenant_id):
  245. errors = []
  246. success_count = 0
  247. req = request.json
  248. if not req:
  249. ids = None
  250. else:
  251. ids = req.get("ids")
  252. if not ids:
  253. id_list = []
  254. dias = DialogService.query(tenant_id=tenant_id, status=StatusEnum.VALID.value)
  255. for dia in dias:
  256. id_list.append(dia.id)
  257. else:
  258. id_list = ids
  259. unique_id_list, duplicate_messages = check_duplicate_ids(id_list, "chat")
  260. id_list = unique_id_list
  261. for id in id_list:
  262. if not DialogService.query(tenant_id=tenant_id, id=id, status=StatusEnum.VALID.value):
  263. errors.append(f"You don't own the chat {id}")
  264. continue
  265. temp_dict = {"status": StatusEnum.INVALID.value}
  266. DialogService.update_by_id(id, temp_dict)
  267. success_count += 1
  268. if errors:
  269. if success_count > 0:
  270. return get_result(
  271. data={"success_count": success_count, "errors": errors},
  272. message=f"Partially deleted {success_count} chats with {len(errors)} errors"
  273. )
  274. else:
  275. return get_error_data_result(message="; ".join(errors))
  276. if duplicate_messages:
  277. if success_count > 0:
  278. return get_result(
  279. message=f"Partially deleted {success_count} chats with {len(duplicate_messages)} errors",
  280. data={"success_count": success_count, "errors": duplicate_messages}
  281. )
  282. else:
  283. return get_error_data_result(message=";".join(duplicate_messages))
  284. return get_result()
  285. @manager.route('/chats', methods=['GET']) # noqa: F821
  286. @token_required
  287. def list_chat(tenant_id):
  288. id = request.args.get("id")
  289. name = request.args.get("name")
  290. if id or name:
  291. chat = DialogService.query(id=id, name=name, status=StatusEnum.VALID.value, tenant_id=tenant_id)
  292. if not chat:
  293. return get_error_data_result(message="The chat doesn't exist")
  294. page_number = int(request.args.get("page", 1))
  295. items_per_page = int(request.args.get("page_size", 30))
  296. orderby = request.args.get("orderby", "create_time")
  297. if request.args.get("desc") == "False" or request.args.get("desc") == "false":
  298. desc = False
  299. else:
  300. desc = True
  301. chats = DialogService.get_list(tenant_id, page_number, items_per_page, orderby, desc, id, name)
  302. if not chats:
  303. return get_result(data=[])
  304. list_assts = []
  305. key_mapping = {"parameters": "variables",
  306. "prologue": "opener",
  307. "quote": "show_quote",
  308. "system": "prompt",
  309. "rerank_id": "rerank_model",
  310. "vector_similarity_weight": "keywords_similarity_weight",
  311. "do_refer": "show_quotation"}
  312. key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
  313. for res in chats:
  314. renamed_dict = {}
  315. for key, value in res["prompt_config"].items():
  316. new_key = key_mapping.get(key, key)
  317. renamed_dict[new_key] = value
  318. res["prompt"] = renamed_dict
  319. del res["prompt_config"]
  320. new_dict = {"similarity_threshold": res["similarity_threshold"],
  321. "keywords_similarity_weight": 1-res["vector_similarity_weight"],
  322. "top_n": res["top_n"],
  323. "rerank_model": res['rerank_id']}
  324. res["prompt"].update(new_dict)
  325. for key in key_list:
  326. del res[key]
  327. res["llm"] = res.pop("llm_setting")
  328. res["llm"]["model_name"] = res.pop("llm_id")
  329. kb_list = []
  330. for kb_id in res["kb_ids"]:
  331. kb = KnowledgebaseService.query(id=kb_id)
  332. if not kb:
  333. logging.warning(f"The kb {kb_id} does not exist.")
  334. continue
  335. kb_list.append(kb[0].to_json())
  336. del res["kb_ids"]
  337. res["datasets"] = kb_list
  338. res["avatar"] = res.pop("icon")
  339. list_assts.append(res)
  340. return get_result(data=list_assts)