您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

retrieval.py 3.1KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. from abc import ABC
  17. import pandas as pd
  18. from api.db import LLMType
  19. from api.db.services.knowledgebase_service import KnowledgebaseService
  20. from api.db.services.llm_service import LLMBundle
  21. from api.settings import retrievaler
  22. from agent.component.base import ComponentBase, ComponentParamBase
  23. class RetrievalParam(ComponentParamBase):
  24. """
  25. Define the Retrieval component parameters.
  26. """
  27. def __init__(self):
  28. super().__init__()
  29. self.similarity_threshold = 0.2
  30. self.keywords_similarity_weight = 0.5
  31. self.top_n = 8
  32. self.top_k = 1024
  33. self.kb_ids = []
  34. self.rerank_id = ""
  35. self.empty_response = ""
  36. def check(self):
  37. self.check_decimal_float(self.similarity_threshold, "[Retrieval] Similarity threshold")
  38. self.check_decimal_float(self.keywords_similarity_weight, "[Retrieval] Keywords similarity weight")
  39. self.check_positive_number(self.top_n, "[Retrieval] Top N")
  40. class Retrieval(ComponentBase, ABC):
  41. component_name = "Retrieval"
  42. def _run(self, history, **kwargs):
  43. query = self.get_input()
  44. query = str(query["content"][0]) if "content" in query else ""
  45. kbs = KnowledgebaseService.get_by_ids(self._param.kb_ids)
  46. if not kbs:
  47. return Retrieval.be_output("")
  48. embd_nms = list(set([kb.embd_id for kb in kbs]))
  49. assert len(embd_nms) == 1, "Knowledge bases use different embedding models."
  50. embd_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING, embd_nms[0])
  51. self._canvas.set_embedding_model(embd_nms[0])
  52. rerank_mdl = None
  53. if self._param.rerank_id:
  54. rerank_mdl = LLMBundle(kbs[0].tenant_id, LLMType.RERANK, self._param.rerank_id)
  55. kbinfos = retrievaler.retrieval(query, embd_mdl, kbs[0].tenant_id, self._param.kb_ids,
  56. 1, self._param.top_n,
  57. self._param.similarity_threshold, 1 - self._param.keywords_similarity_weight,
  58. aggs=False, rerank_mdl=rerank_mdl)
  59. if not kbinfos["chunks"]:
  60. df = Retrieval.be_output("")
  61. if self._param.empty_response and self._param.empty_response.strip():
  62. df["empty_response"] = self._param.empty_response
  63. return df
  64. df = pd.DataFrame(kbinfos["chunks"])
  65. df["content"] = df["content_with_weight"]
  66. del df["content_with_weight"]
  67. print(">>>>>>>>>>>>>>>>>>>>>>>>>>\n", query, df)
  68. return df