| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282 | 
							- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - 
 - import logging
 - import copy
 - import re
 - 
 - from api.db import ParserType
 - from io import BytesIO
 - from rag.nlp import rag_tokenizer, tokenize, tokenize_table, bullets_category, title_frequency, tokenize_chunks, docx_question_level
 - from rag.utils import num_tokens_from_string
 - from deepdoc.parser import PdfParser, PlainParser, DocxParser
 - from docx import Document
 - from PIL import Image
 - 
 - 
 - class Pdf(PdfParser):
 -     def __init__(self):
 -         self.model_speciess = ParserType.MANUAL.value
 -         super().__init__()
 - 
 -     def __call__(self, filename, binary=None, from_page=0,
 -                  to_page=100000, zoomin=3, callback=None):
 -         from timeit import default_timer as timer
 -         start = timer()
 -         callback(msg="OCR started")
 -         self.__images__(
 -             filename if not binary else binary,
 -             zoomin,
 -             from_page,
 -             to_page,
 -             callback
 -         )
 -         callback(msg="OCR finished ({:.2f}s)".format(timer() - start))
 -         # for bb in self.boxes:
 -         #    for b in bb:
 -         #        print(b)
 -         logging.debug("OCR: {}".format(timer() - start))
 - 
 -         start = timer()
 -         self._layouts_rec(zoomin)
 -         callback(0.65, "Layout analysis ({:.2f}s)".format(timer() - start))
 -         logging.debug("layouts: {}".format(timer() - start))
 - 
 -         start = timer()
 -         self._table_transformer_job(zoomin)
 -         callback(0.67, "Table analysis ({:.2f}s)".format(timer() - start))
 - 
 -         start = timer()
 -         self._text_merge()
 -         tbls = self._extract_table_figure(True, zoomin, True, True)
 -         self._concat_downward()
 -         self._filter_forpages()
 -         callback(0.68, "Text merged ({:.2f}s)".format(timer() - start))
 - 
 -         # clean mess
 -         for b in self.boxes:
 -             b["text"] = re.sub(r"([\t  ]|\u3000){2,}", " ", b["text"].strip())
 - 
 -         return [(b["text"], b.get("layout_no", ""), self.get_position(b, zoomin))
 -                 for i, b in enumerate(self.boxes)], tbls
 - 
 - 
 - class Docx(DocxParser):
 -     def __init__(self):
 -         pass
 - 
 -     def get_picture(self, document, paragraph):
 -         img = paragraph._element.xpath('.//pic:pic')
 -         if not img:
 -             return None
 -         img = img[0]
 -         embed = img.xpath('.//a:blip/@r:embed')[0]
 -         related_part = document.part.related_parts[embed]
 -         image = related_part.image
 -         image = Image.open(BytesIO(image.blob))
 -         return image
 - 
 -     def concat_img(self, img1, img2):
 -         if img1 and not img2:
 -             return img1
 -         if not img1 and img2:
 -             return img2
 -         if not img1 and not img2:
 -             return None
 -         width1, height1 = img1.size
 -         width2, height2 = img2.size
 - 
 -         new_width = max(width1, width2)
 -         new_height = height1 + height2
 -         new_image = Image.new('RGB', (new_width, new_height))
 - 
 -         new_image.paste(img1, (0, 0))
 -         new_image.paste(img2, (0, height1))
 - 
 -         return new_image
 - 
 -     def __call__(self, filename, binary=None, from_page=0, to_page=100000, callback=None):
 -         self.doc = Document(
 -             filename) if not binary else Document(BytesIO(binary))
 -         pn = 0
 -         last_answer, last_image = "", None
 -         question_stack, level_stack = [], []
 -         ti_list = []
 -         for p in self.doc.paragraphs:
 -             if pn > to_page:
 -                 break
 -             question_level, p_text = 0, ''
 -             if from_page <= pn < to_page and p.text.strip():
 -                 question_level, p_text = docx_question_level(p)
 -             if not question_level or question_level > 6: # not a question
 -                 last_answer = f'{last_answer}\n{p_text}'
 -                 current_image = self.get_picture(self.doc, p)
 -                 last_image = self.concat_img(last_image, current_image)
 -             else:   # is a question
 -                 if last_answer or last_image:
 -                     sum_question = '\n'.join(question_stack)
 -                     if sum_question:
 -                         ti_list.append((f'{sum_question}\n{last_answer}', last_image))
 -                     last_answer, last_image = '', None
 - 
 -                 i = question_level
 -                 while question_stack and i <= level_stack[-1]:
 -                     question_stack.pop()
 -                     level_stack.pop()
 -                 question_stack.append(p_text)
 -                 level_stack.append(question_level)
 -             for run in p.runs:
 -                 if 'lastRenderedPageBreak' in run._element.xml:
 -                     pn += 1
 -                     continue
 -                 if 'w:br' in run._element.xml and 'type="page"' in run._element.xml:
 -                     pn += 1
 -         if last_answer:
 -             sum_question = '\n'.join(question_stack)
 -             if sum_question:
 -                 ti_list.append((f'{sum_question}\n{last_answer}', last_image))
 -                 
 -         tbls = []
 -         for tb in self.doc.tables:
 -             html= "<table>"
 -             for r in tb.rows:
 -                 html += "<tr>"
 -                 i = 0
 -                 while i < len(r.cells):
 -                     span = 1
 -                     c = r.cells[i]
 -                     for j in range(i+1, len(r.cells)):
 -                         if c.text == r.cells[j].text:
 -                             span += 1
 -                             i = j
 -                     i += 1
 -                     html += f"<td>{c.text}</td>" if span == 1 else f"<td colspan='{span}'>{c.text}</td>"
 -                 html += "</tr>"
 -             html += "</table>"
 -             tbls.append(((None, html), ""))
 -         return ti_list, tbls
 - 
 - 
 - def chunk(filename, binary=None, from_page=0, to_page=100000,
 -           lang="Chinese", callback=None, **kwargs):
 -     """
 -         Only pdf is supported.
 -     """
 -     pdf_parser = None
 -     doc = {
 -         "docnm_kwd": filename
 -     }
 -     doc["title_tks"] = rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", doc["docnm_kwd"]))
 -     doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
 -     # is it English
 -     eng = lang.lower() == "english"  # pdf_parser.is_english
 -     if re.search(r"\.pdf$", filename, re.IGNORECASE):
 -         pdf_parser = Pdf() if kwargs.get(
 -             "parser_config", {}).get(
 -             "layout_recognize", True) else PlainParser()
 -         sections, tbls = pdf_parser(filename if not binary else binary,
 -                                     from_page=from_page, to_page=to_page, callback=callback)
 -         if sections and len(sections[0]) < 3:
 -             sections = [(t, lvl, [[0] * 5]) for t, lvl in sections]
 -         # set pivot using the most frequent type of title,
 -         # then merge between 2 pivot
 -         if len(sections) > 0 and len(pdf_parser.outlines) / len(sections) > 0.1:
 -             max_lvl = max([lvl for _, lvl in pdf_parser.outlines])
 -             most_level = max(0, max_lvl - 1)
 -             levels = []
 -             for txt, _, _ in sections:
 -                 for t, lvl in pdf_parser.outlines:
 -                     tks = set([t[i] + t[i + 1] for i in range(len(t) - 1)])
 -                     tks_ = set([txt[i] + txt[i + 1]
 -                                 for i in range(min(len(t), len(txt) - 1))])
 -                     if len(set(tks & tks_)) / max([len(tks), len(tks_), 1]) > 0.8:
 -                         levels.append(lvl)
 -                         break
 -                 else:
 -                     levels.append(max_lvl + 1)
 - 
 -         else:
 -             bull = bullets_category([txt for txt, _, _ in sections])
 -             most_level, levels = title_frequency(
 -                 bull, [(txt, lvl) for txt, lvl, _ in sections])
 - 
 -         assert len(sections) == len(levels)
 -         sec_ids = []
 -         sid = 0
 -         for i, lvl in enumerate(levels):
 -             if lvl <= most_level and i > 0 and lvl != levels[i - 1]:
 -                 sid += 1
 -             sec_ids.append(sid)
 -             # print(lvl, self.boxes[i]["text"], most_level, sid)
 - 
 -         sections = [(txt, sec_ids[i], poss)
 -                     for i, (txt, _, poss) in enumerate(sections)]
 -         for (img, rows), poss in tbls:
 -             if not rows:
 -                 continue
 -             sections.append((rows if isinstance(rows, str) else rows[0], -1,
 -                             [(p[0] + 1 - from_page, p[1], p[2], p[3], p[4]) for p in poss]))
 - 
 -         def tag(pn, left, right, top, bottom):
 -             if pn + left + right + top + bottom == 0:
 -                 return ""
 -             return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##" \
 -                 .format(pn, left, right, top, bottom)
 - 
 -         chunks = []
 -         last_sid = -2
 -         tk_cnt = 0
 -         for txt, sec_id, poss in sorted(sections, key=lambda x: (
 -                 x[-1][0][0], x[-1][0][3], x[-1][0][1])):
 -             poss = "\t".join([tag(*pos) for pos in poss])
 -             if tk_cnt < 32 or (tk_cnt < 1024 and (sec_id == last_sid or sec_id == -1)):
 -                 if chunks:
 -                     chunks[-1] += "\n" + txt + poss
 -                     tk_cnt += num_tokens_from_string(txt)
 -                     continue
 -             chunks.append(txt + poss)
 -             tk_cnt = num_tokens_from_string(txt)
 -             if sec_id > -1:
 -                 last_sid = sec_id
 - 
 -         res = tokenize_table(tbls, doc, eng)
 -         res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser))
 -         return res
 - 
 -     if re.search(r"\.docx$", filename, re.IGNORECASE):
 -         docx_parser = Docx()
 -         ti_list, tbls = docx_parser(filename, binary,
 -                                     from_page=0, to_page=10000, callback=callback)
 -         res = tokenize_table(tbls, doc, eng)
 -         for text, image in ti_list:
 -             d = copy.deepcopy(doc)
 -             d['image'] = image
 -             tokenize(d, text, eng)
 -             res.append(d)
 -         return res
 -     else:
 -         raise NotImplementedError("file type not supported yet(pdf and docx supported)")
 -     
 - 
 - if __name__ == "__main__":
 -     import sys
 - 
 - 
 -     def dummy(prog=None, msg=""):
 -         pass
 - 
 - 
 -     chunk(sys.argv[1], callback=dummy)
 
 
  |