You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

task_executor.py 16KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import datetime
  17. import json
  18. import logging
  19. import os
  20. import hashlib
  21. import copy
  22. import re
  23. import sys
  24. import time
  25. from concurrent.futures import ThreadPoolExecutor
  26. from functools import partial
  27. from io import BytesIO
  28. from multiprocessing.context import TimeoutError
  29. from timeit import default_timer as timer
  30. import numpy as np
  31. import pandas as pd
  32. from api.db import LLMType, ParserType
  33. from api.db.services.dialog_service import keyword_extraction, question_proposal
  34. from api.db.services.document_service import DocumentService
  35. from api.db.services.llm_service import LLMBundle
  36. from api.db.services.task_service import TaskService
  37. from api.db.services.file2document_service import File2DocumentService
  38. from api.settings import retrievaler, docStoreConn
  39. from api.db.db_models import close_connection
  40. from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture, naive, one, audio, knowledge_graph, email
  41. from rag.nlp import search, rag_tokenizer
  42. from rag.raptor import RecursiveAbstractiveProcessing4TreeOrganizedRetrieval as Raptor
  43. from api.utils.log_utils import logger, LOG_FILE
  44. from rag.settings import DOC_MAXIMUM_SIZE, SVR_QUEUE_NAME
  45. from rag.utils import rmSpace, num_tokens_from_string
  46. from rag.utils.redis_conn import REDIS_CONN, Payload
  47. from rag.utils.storage_factory import STORAGE_IMPL
  48. BATCH_SIZE = 64
  49. FACTORY = {
  50. "general": naive,
  51. ParserType.NAIVE.value: naive,
  52. ParserType.PAPER.value: paper,
  53. ParserType.BOOK.value: book,
  54. ParserType.PRESENTATION.value: presentation,
  55. ParserType.MANUAL.value: manual,
  56. ParserType.LAWS.value: laws,
  57. ParserType.QA.value: qa,
  58. ParserType.TABLE.value: table,
  59. ParserType.RESUME.value: resume,
  60. ParserType.PICTURE.value: picture,
  61. ParserType.ONE.value: one,
  62. ParserType.AUDIO.value: audio,
  63. ParserType.EMAIL.value: email,
  64. ParserType.KG.value: knowledge_graph
  65. }
  66. CONSUMER_NAME = "task_consumer_" + ("0" if len(sys.argv) < 2 else sys.argv[1])
  67. PAYLOAD: Payload | None = None
  68. def set_progress(task_id, from_page=0, to_page=-1, prog=None, msg="Processing..."):
  69. global PAYLOAD
  70. if prog is not None and prog < 0:
  71. msg = "[ERROR]" + msg
  72. cancel = TaskService.do_cancel(task_id)
  73. if cancel:
  74. msg += " [Canceled]"
  75. prog = -1
  76. if to_page > 0:
  77. if msg:
  78. msg = f"Page({from_page + 1}~{to_page + 1}): " + msg
  79. d = {"progress_msg": msg}
  80. if prog is not None:
  81. d["progress"] = prog
  82. try:
  83. TaskService.update_progress(task_id, d)
  84. except Exception:
  85. logger.exception(f"set_progress({task_id}) got exception")
  86. close_connection()
  87. if cancel:
  88. if PAYLOAD:
  89. PAYLOAD.ack()
  90. PAYLOAD = None
  91. os._exit(0)
  92. def collect():
  93. global CONSUMER_NAME, PAYLOAD
  94. try:
  95. PAYLOAD = REDIS_CONN.get_unacked_for(CONSUMER_NAME, SVR_QUEUE_NAME, "rag_flow_svr_task_broker")
  96. if not PAYLOAD:
  97. PAYLOAD = REDIS_CONN.queue_consumer(SVR_QUEUE_NAME, "rag_flow_svr_task_broker", CONSUMER_NAME)
  98. if not PAYLOAD:
  99. time.sleep(1)
  100. return pd.DataFrame()
  101. except Exception:
  102. logger.exception("Get task event from queue exception")
  103. return pd.DataFrame()
  104. msg = PAYLOAD.get_message()
  105. if not msg:
  106. return pd.DataFrame()
  107. if TaskService.do_cancel(msg["id"]):
  108. logger.info("Task {} has been canceled.".format(msg["id"]))
  109. return pd.DataFrame()
  110. tasks = TaskService.get_tasks(msg["id"])
  111. if not tasks:
  112. logger.warning("{} empty task!".format(msg["id"]))
  113. return []
  114. tasks = pd.DataFrame(tasks)
  115. if msg.get("type", "") == "raptor":
  116. tasks["task_type"] = "raptor"
  117. return tasks
  118. def get_storage_binary(bucket, name):
  119. return STORAGE_IMPL.get(bucket, name)
  120. def build(row):
  121. if row["size"] > DOC_MAXIMUM_SIZE:
  122. set_progress(row["id"], prog=-1, msg="File size exceeds( <= %dMb )" %
  123. (int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
  124. return []
  125. callback = partial(
  126. set_progress,
  127. row["id"],
  128. row["from_page"],
  129. row["to_page"])
  130. chunker = FACTORY[row["parser_id"].lower()]
  131. try:
  132. st = timer()
  133. bucket, name = File2DocumentService.get_storage_address(doc_id=row["doc_id"])
  134. binary = get_storage_binary(bucket, name)
  135. logger.info(
  136. "From minio({}) {}/{}".format(timer() - st, row["location"], row["name"]))
  137. except TimeoutError:
  138. callback(-1, "Internal server error: Fetch file from minio timeout. Could you try it again.")
  139. logger.exception("Minio {}/{} got timeout: Fetch file from minio timeout.".format(row["location"], row["name"]))
  140. return
  141. except Exception as e:
  142. if re.search("(No such file|not found)", str(e)):
  143. callback(-1, "Can not find file <%s> from minio. Could you try it again?" % row["name"])
  144. else:
  145. callback(-1, "Get file from minio: %s" % str(e).replace("'", ""))
  146. logger.exception("Chunking {}/{} got exception".format(row["location"], row["name"]))
  147. return
  148. try:
  149. cks = chunker.chunk(row["name"], binary=binary, from_page=row["from_page"],
  150. to_page=row["to_page"], lang=row["language"], callback=callback,
  151. kb_id=row["kb_id"], parser_config=row["parser_config"], tenant_id=row["tenant_id"])
  152. logger.info("Chunking({}) {}/{} done".format(timer() - st, row["location"], row["name"]))
  153. except Exception as e:
  154. callback(-1, "Internal server error while chunking: %s" %
  155. str(e).replace("'", ""))
  156. logger.exception("Chunking {}/{} got exception".format(row["location"], row["name"]))
  157. return
  158. docs = []
  159. doc = {
  160. "doc_id": row["doc_id"],
  161. "kb_id": str(row["kb_id"])
  162. }
  163. el = 0
  164. for ck in cks:
  165. d = copy.deepcopy(doc)
  166. d.update(ck)
  167. md5 = hashlib.md5()
  168. md5.update((ck["content_with_weight"] +
  169. str(d["doc_id"])).encode("utf-8"))
  170. d["id"] = md5.hexdigest()
  171. d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
  172. d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
  173. if not d.get("image"):
  174. d["img_id"] = ""
  175. d["page_num_list"] = json.dumps([])
  176. d["position_list"] = json.dumps([])
  177. d["top_list"] = json.dumps([])
  178. docs.append(d)
  179. continue
  180. try:
  181. output_buffer = BytesIO()
  182. if isinstance(d["image"], bytes):
  183. output_buffer = BytesIO(d["image"])
  184. else:
  185. d["image"].save(output_buffer, format='JPEG')
  186. st = timer()
  187. STORAGE_IMPL.put(row["kb_id"], d["id"], output_buffer.getvalue())
  188. el += timer() - st
  189. except Exception:
  190. logger.exception("Saving image of chunk {}/{}/{} got exception".format(row["location"], row["name"], d["_id"]))
  191. d["img_id"] = "{}-{}".format(row["kb_id"], d["id"])
  192. del d["image"]
  193. docs.append(d)
  194. logger.info("MINIO PUT({}):{}".format(row["name"], el))
  195. if row["parser_config"].get("auto_keywords", 0):
  196. callback(msg="Start to generate keywords for every chunk ...")
  197. chat_mdl = LLMBundle(row["tenant_id"], LLMType.CHAT, llm_name=row["llm_id"], lang=row["language"])
  198. for d in docs:
  199. d["important_kwd"] = keyword_extraction(chat_mdl, d["content_with_weight"],
  200. row["parser_config"]["auto_keywords"]).split(",")
  201. d["important_tks"] = rag_tokenizer.tokenize(" ".join(d["important_kwd"]))
  202. if row["parser_config"].get("auto_questions", 0):
  203. callback(msg="Start to generate questions for every chunk ...")
  204. chat_mdl = LLMBundle(row["tenant_id"], LLMType.CHAT, llm_name=row["llm_id"], lang=row["language"])
  205. for d in docs:
  206. qst = question_proposal(chat_mdl, d["content_with_weight"], row["parser_config"]["auto_questions"])
  207. d["content_with_weight"] = f"Question: \n{qst}\n\nAnswer:\n" + d["content_with_weight"]
  208. qst = rag_tokenizer.tokenize(qst)
  209. if "content_ltks" in d:
  210. d["content_ltks"] += " " + qst
  211. if "content_sm_ltks" in d:
  212. d["content_sm_ltks"] += " " + rag_tokenizer.fine_grained_tokenize(qst)
  213. return docs
  214. def init_kb(row, vector_size: int):
  215. idxnm = search.index_name(row["tenant_id"])
  216. return docStoreConn.createIdx(idxnm, row["kb_id"], vector_size)
  217. def embedding(docs, mdl, parser_config=None, callback=None):
  218. if parser_config is None:
  219. parser_config = {}
  220. batch_size = 32
  221. tts, cnts = [rmSpace(d["title_tks"]) for d in docs if d.get("title_tks")], [
  222. re.sub(r"</?(table|td|caption|tr|th)( [^<>]{0,12})?>", " ", d["content_with_weight"]) for d in docs]
  223. tk_count = 0
  224. if len(tts) == len(cnts):
  225. tts_ = np.array([])
  226. for i in range(0, len(tts), batch_size):
  227. vts, c = mdl.encode(tts[i: i + batch_size])
  228. if len(tts_) == 0:
  229. tts_ = vts
  230. else:
  231. tts_ = np.concatenate((tts_, vts), axis=0)
  232. tk_count += c
  233. callback(prog=0.6 + 0.1 * (i + 1) / len(tts), msg="")
  234. tts = tts_
  235. cnts_ = np.array([])
  236. for i in range(0, len(cnts), batch_size):
  237. vts, c = mdl.encode(cnts[i: i + batch_size])
  238. if len(cnts_) == 0:
  239. cnts_ = vts
  240. else:
  241. cnts_ = np.concatenate((cnts_, vts), axis=0)
  242. tk_count += c
  243. callback(prog=0.7 + 0.2 * (i + 1) / len(cnts), msg="")
  244. cnts = cnts_
  245. title_w = float(parser_config.get("filename_embd_weight", 0.1))
  246. vects = (title_w * tts + (1 - title_w) *
  247. cnts) if len(tts) == len(cnts) else cnts
  248. assert len(vects) == len(docs)
  249. vector_size = 0
  250. for i, d in enumerate(docs):
  251. v = vects[i].tolist()
  252. vector_size = len(v)
  253. d["q_%d_vec" % len(v)] = v
  254. return tk_count, vector_size
  255. def run_raptor(row, chat_mdl, embd_mdl, callback=None):
  256. vts, _ = embd_mdl.encode(["ok"])
  257. vector_size = len(vts[0])
  258. vctr_nm = "q_%d_vec" % vector_size
  259. chunks = []
  260. for d in retrievaler.chunk_list(row["doc_id"], row["tenant_id"], [str(row["kb_id"])], fields=["content_with_weight", vctr_nm]):
  261. chunks.append((d["content_with_weight"], np.array(d[vctr_nm])))
  262. raptor = Raptor(
  263. row["parser_config"]["raptor"].get("max_cluster", 64),
  264. chat_mdl,
  265. embd_mdl,
  266. row["parser_config"]["raptor"]["prompt"],
  267. row["parser_config"]["raptor"]["max_token"],
  268. row["parser_config"]["raptor"]["threshold"]
  269. )
  270. original_length = len(chunks)
  271. raptor(chunks, row["parser_config"]["raptor"]["random_seed"], callback)
  272. doc = {
  273. "doc_id": row["doc_id"],
  274. "kb_id": [str(row["kb_id"])],
  275. "docnm_kwd": row["name"],
  276. "title_tks": rag_tokenizer.tokenize(row["name"])
  277. }
  278. res = []
  279. tk_count = 0
  280. for content, vctr in chunks[original_length:]:
  281. d = copy.deepcopy(doc)
  282. md5 = hashlib.md5()
  283. md5.update((content + str(d["doc_id"])).encode("utf-8"))
  284. d["id"] = md5.hexdigest()
  285. d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
  286. d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
  287. d[vctr_nm] = vctr.tolist()
  288. d["content_with_weight"] = content
  289. d["content_ltks"] = rag_tokenizer.tokenize(content)
  290. d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
  291. res.append(d)
  292. tk_count += num_tokens_from_string(content)
  293. return res, tk_count, vector_size
  294. def main():
  295. rows = collect()
  296. if len(rows) == 0:
  297. return
  298. for _, r in rows.iterrows():
  299. callback = partial(set_progress, r["id"], r["from_page"], r["to_page"])
  300. try:
  301. embd_mdl = LLMBundle(r["tenant_id"], LLMType.EMBEDDING, llm_name=r["embd_id"], lang=r["language"])
  302. except Exception as e:
  303. callback(-1, msg=str(e))
  304. logger.exception("LLMBundle got exception")
  305. continue
  306. if r.get("task_type", "") == "raptor":
  307. try:
  308. chat_mdl = LLMBundle(r["tenant_id"], LLMType.CHAT, llm_name=r["llm_id"], lang=r["language"])
  309. cks, tk_count, vector_size = run_raptor(r, chat_mdl, embd_mdl, callback)
  310. except Exception as e:
  311. callback(-1, msg=str(e))
  312. logger.exception("run_raptor got exception")
  313. continue
  314. else:
  315. st = timer()
  316. cks = build(r)
  317. logger.info("Build chunks({}): {}".format(r["name"], timer() - st))
  318. if cks is None:
  319. continue
  320. if not cks:
  321. callback(1., "No chunk! Done!")
  322. continue
  323. # TODO: exception handler
  324. ## set_progress(r["did"], -1, "ERROR: ")
  325. callback(
  326. msg="Finished slicing files(%d). Start to embedding the content." %
  327. len(cks))
  328. st = timer()
  329. try:
  330. tk_count, vector_size = embedding(cks, embd_mdl, r["parser_config"], callback)
  331. except Exception as e:
  332. callback(-1, "Embedding error:{}".format(str(e)))
  333. logger.exception("run_rembedding got exception")
  334. tk_count = 0
  335. logger.info("Embedding elapsed({}): {:.2f}".format(r["name"], timer() - st))
  336. callback(msg="Finished embedding({:.2f})! Start to build index!".format(timer() - st))
  337. # logger.info(f"task_executor init_kb index {search.index_name(r["tenant_id"])} embd_mdl {embd_mdl.llm_name} vector length {vector_size}")
  338. init_kb(r, vector_size)
  339. chunk_count = len(set([c["id"] for c in cks]))
  340. st = timer()
  341. es_r = ""
  342. es_bulk_size = 4
  343. for b in range(0, len(cks), es_bulk_size):
  344. es_r = docStoreConn.insert(cks[b:b + es_bulk_size], search.index_name(r["tenant_id"]), r["kb_id"])
  345. if b % 128 == 0:
  346. callback(prog=0.8 + 0.1 * (b + 1) / len(cks), msg="")
  347. logger.info("Indexing elapsed({}): {:.2f}".format(r["name"], timer() - st))
  348. if es_r:
  349. callback(-1, f"Insert chunk error, detail info please check {LOG_FILE}. Please also check ES status!")
  350. docStoreConn.delete({"doc_id": r["doc_id"]}, search.index_name(r["tenant_id"]), r["kb_id"])
  351. logger.error('Insert chunk error: ' + str(es_r))
  352. else:
  353. if TaskService.do_cancel(r["id"]):
  354. docStoreConn.delete({"doc_id": r["doc_id"]}, search.index_name(r["tenant_id"]), r["kb_id"])
  355. continue
  356. callback(1., "Done!")
  357. DocumentService.increment_chunk_num(
  358. r["doc_id"], r["kb_id"], tk_count, chunk_count, 0)
  359. logger.info(
  360. "Chunk doc({}), token({}), chunks({}), elapsed:{:.2f}".format(
  361. r["id"], tk_count, len(cks), timer() - st))
  362. def report_status():
  363. global CONSUMER_NAME
  364. while True:
  365. try:
  366. obj = REDIS_CONN.get("TASKEXE")
  367. if not obj: obj = {}
  368. else: obj = json.loads(obj)
  369. if CONSUMER_NAME not in obj: obj[CONSUMER_NAME] = []
  370. obj[CONSUMER_NAME].append(timer())
  371. obj[CONSUMER_NAME] = obj[CONSUMER_NAME][-60:]
  372. REDIS_CONN.set_obj("TASKEXE", obj, 60*2)
  373. except Exception:
  374. logger.exception("report_status got exception")
  375. time.sleep(30)
  376. if __name__ == "__main__":
  377. peewee_logger = logging.getLogger('peewee')
  378. peewee_logger.propagate = False
  379. peewee_logger.addHandler(logger.handlers[0])
  380. peewee_logger.setLevel(logger.handlers[0].level)
  381. exe = ThreadPoolExecutor(max_workers=1)
  382. exe.submit(report_status)
  383. while True:
  384. main()
  385. if PAYLOAD:
  386. PAYLOAD.ack()
  387. PAYLOAD = None