| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172 |
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import base64
- import datetime
- import json
- import re
- import pandas as pd
- import requests
- from api.db.services.knowledgebase_service import KnowledgebaseService
- from rag.nlp import rag_tokenizer
- from deepdoc.parser.resume import refactor
- from deepdoc.parser.resume import step_one, step_two
- from api.utils.log_utils import logger
- from rag.utils import rmSpace
-
- forbidden_select_fields4resume = [
- "name_pinyin_kwd", "edu_first_fea_kwd", "degree_kwd", "sch_rank_kwd", "edu_fea_kwd"
- ]
-
-
- def remote_call(filename, binary):
- q = {
- "header": {
- "uid": 1,
- "user": "kevinhu",
- "log_id": filename
- },
- "request": {
- "p": {
- "request_id": "1",
- "encrypt_type": "base64",
- "filename": filename,
- "langtype": '',
- "fileori": base64.b64encode(binary).decode('utf-8')
- },
- "c": "resume_parse_module",
- "m": "resume_parse"
- }
- }
- for _ in range(3):
- try:
- resume = requests.post(
- "http://127.0.0.1:61670/tog",
- data=json.dumps(q))
- resume = resume.json()["response"]["results"]
- resume = refactor(resume)
- for k in ["education", "work", "project",
- "training", "skill", "certificate", "language"]:
- if not resume.get(k) and k in resume:
- del resume[k]
-
- resume = step_one.refactor(pd.DataFrame([{"resume_content": json.dumps(resume), "tob_resume_id": "x",
- "updated_at": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}]))
- resume = step_two.parse(resume)
- return resume
- except Exception:
- logger.exception("Resume parser error")
- return {}
-
-
- def chunk(filename, binary=None, callback=None, **kwargs):
- """
- The supported file formats are pdf, docx and txt.
- To maximize the effectiveness, parse the resume correctly, please concat us: https://github.com/infiniflow/ragflow
- """
- if not re.search(r"\.(pdf|doc|docx|txt)$", filename, flags=re.IGNORECASE):
- raise NotImplementedError("file type not supported yet(pdf supported)")
-
- if not binary:
- with open(filename, "rb") as f:
- binary = f.read()
-
- callback(0.2, "Resume parsing is going on...")
- resume = remote_call(filename, binary)
- if len(resume.keys()) < 7:
- callback(-1, "Resume is not successfully parsed.")
- raise Exception("Resume parser remote call fail!")
- callback(0.6, "Done parsing. Chunking...")
- logger.info("chunking resume: " + json.dumps(resume, ensure_ascii=False, indent=2))
-
- field_map = {
- "name_kwd": "姓名/名字",
- "name_pinyin_kwd": "姓名拼音/名字拼音",
- "gender_kwd": "性别(男,女)",
- "age_int": "年龄/岁/年纪",
- "phone_kwd": "电话/手机/微信",
- "email_tks": "email/e-mail/邮箱",
- "position_name_tks": "职位/职能/岗位/职责",
- "expect_city_names_tks": "期望城市",
- "work_exp_flt": "工作年限/工作年份/N年经验/毕业了多少年",
- "corporation_name_tks": "最近就职(上班)的公司/上一家公司",
-
- "first_school_name_tks": "第一学历毕业学校",
- "first_degree_kwd": "第一学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)",
- "highest_degree_kwd": "最高学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)",
- "first_major_tks": "第一学历专业",
- "edu_first_fea_kwd": "第一学历标签(211,留学,双一流,985,海外知名,重点大学,中专,专升本,专科,本科,大专)",
-
- "degree_kwd": "过往学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)",
- "major_tks": "学过的专业/过往专业",
- "school_name_tks": "学校/毕业院校",
- "sch_rank_kwd": "学校标签(顶尖学校,精英学校,优质学校,一般学校)",
- "edu_fea_kwd": "教育标签(211,留学,双一流,985,海外知名,重点大学,中专,专升本,专科,本科,大专)",
-
- "corp_nm_tks": "就职过的公司/之前的公司/上过班的公司",
- "edu_end_int": "毕业年份",
- "industry_name_tks": "所在行业",
-
- "birth_dt": "生日/出生年份",
- "expect_position_name_tks": "期望职位/期望职能/期望岗位",
- }
-
- titles = []
- for n in ["name_kwd", "gender_kwd", "position_name_tks", "age_int"]:
- v = resume.get(n, "")
- if isinstance(v, list):
- v = v[0]
- if n.find("tks") > 0:
- v = rmSpace(v)
- titles.append(str(v))
- doc = {
- "docnm_kwd": filename,
- "title_tks": rag_tokenizer.tokenize("-".join(titles) + "-简历")
- }
- doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
- pairs = []
- for n, m in field_map.items():
- if not resume.get(n):
- continue
- v = resume[n]
- if isinstance(v, list):
- v = " ".join(v)
- if n.find("tks") > 0:
- v = rmSpace(v)
- pairs.append((m, str(v)))
-
- doc["content_with_weight"] = "\n".join(
- ["{}: {}".format(re.sub(r"([^()]+)", "", k), v) for k, v in pairs])
- doc["content_ltks"] = rag_tokenizer.tokenize(doc["content_with_weight"])
- doc["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(doc["content_ltks"])
- for n, _ in field_map.items():
- if n not in resume:
- continue
- if isinstance(resume[n], list) and (
- len(resume[n]) == 1 or n not in forbidden_select_fields4resume):
- resume[n] = resume[n][0]
- if n.find("_tks") > 0:
- resume[n] = rag_tokenizer.fine_grained_tokenize(resume[n])
- doc[n] = resume[n]
-
- logger.info("chunked resume to " + str(doc))
- KnowledgebaseService.update_parser_config(
- kwargs["kb_id"], {"field_map": field_map})
- return [doc]
-
-
- if __name__ == "__main__":
- import sys
-
- def dummy(a, b):
- pass
- chunk(sys.argv[1], callback=dummy)
|