| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import logging
-
- from langfuse import Langfuse
-
- from api import settings
- from api.db import LLMType
- from api.db.db_models import DB, LLM, LLMFactories, TenantLLM
- from api.db.services.common_service import CommonService
- from api.db.services.langfuse_service import TenantLangfuseService
- from api.db.services.user_service import TenantService
- from rag.llm import ChatModel, CvModel, EmbeddingModel, RerankModel, Seq2txtModel, TTSModel
-
-
- class LLMFactoriesService(CommonService):
- model = LLMFactories
-
-
- class LLMService(CommonService):
- model = LLM
-
-
- class TenantLLMService(CommonService):
- model = TenantLLM
-
- @classmethod
- @DB.connection_context()
- def get_api_key(cls, tenant_id, model_name):
- mdlnm, fid = TenantLLMService.split_model_name_and_factory(model_name)
- if not fid:
- objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm)
- else:
- objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm, llm_factory=fid)
- if not objs:
- return
- return objs[0]
-
- @classmethod
- @DB.connection_context()
- def get_my_llms(cls, tenant_id):
- fields = [cls.model.llm_factory, LLMFactories.logo, LLMFactories.tags, cls.model.model_type, cls.model.llm_name, cls.model.used_tokens]
- objs = cls.model.select(*fields).join(LLMFactories, on=(cls.model.llm_factory == LLMFactories.name)).where(cls.model.tenant_id == tenant_id, ~cls.model.api_key.is_null()).dicts()
-
- return list(objs)
-
- @staticmethod
- def split_model_name_and_factory(model_name):
- arr = model_name.split("@")
- if len(arr) < 2:
- return model_name, None
- if len(arr) > 2:
- return "@".join(arr[0:-1]), arr[-1]
-
- # model name must be xxx@yyy
- try:
- model_factories = settings.FACTORY_LLM_INFOS
- model_providers = set([f["name"] for f in model_factories])
- if arr[-1] not in model_providers:
- return model_name, None
- return arr[0], arr[-1]
- except Exception as e:
- logging.exception(f"TenantLLMService.split_model_name_and_factory got exception: {e}")
- return model_name, None
-
- @classmethod
- @DB.connection_context()
- def get_model_config(cls, tenant_id, llm_type, llm_name=None):
- e, tenant = TenantService.get_by_id(tenant_id)
- if not e:
- raise LookupError("Tenant not found")
-
- if llm_type == LLMType.EMBEDDING.value:
- mdlnm = tenant.embd_id if not llm_name else llm_name
- elif llm_type == LLMType.SPEECH2TEXT.value:
- mdlnm = tenant.asr_id
- elif llm_type == LLMType.IMAGE2TEXT.value:
- mdlnm = tenant.img2txt_id if not llm_name else llm_name
- elif llm_type == LLMType.CHAT.value:
- mdlnm = tenant.llm_id if not llm_name else llm_name
- elif llm_type == LLMType.RERANK:
- mdlnm = tenant.rerank_id if not llm_name else llm_name
- elif llm_type == LLMType.TTS:
- mdlnm = tenant.tts_id if not llm_name else llm_name
- else:
- assert False, "LLM type error"
-
- model_config = cls.get_api_key(tenant_id, mdlnm)
- mdlnm, fid = TenantLLMService.split_model_name_and_factory(mdlnm)
- if not model_config: # for some cases seems fid mismatch
- model_config = cls.get_api_key(tenant_id, mdlnm)
- if model_config:
- model_config = model_config.to_dict()
- llm = LLMService.query(llm_name=mdlnm) if not fid else LLMService.query(llm_name=mdlnm, fid=fid)
- if not llm and fid: # for some cases seems fid mismatch
- llm = LLMService.query(llm_name=mdlnm)
- if llm:
- model_config["is_tools"] = llm[0].is_tools
- if not model_config:
- if llm_type in [LLMType.EMBEDDING, LLMType.RERANK]:
- llm = LLMService.query(llm_name=mdlnm) if not fid else LLMService.query(llm_name=mdlnm, fid=fid)
- if llm and llm[0].fid in ["Youdao", "FastEmbed", "BAAI"]:
- model_config = {"llm_factory": llm[0].fid, "api_key": "", "llm_name": mdlnm, "api_base": ""}
- if not model_config:
- if mdlnm == "flag-embedding":
- model_config = {"llm_factory": "Tongyi-Qianwen", "api_key": "", "llm_name": llm_name, "api_base": ""}
- else:
- if not mdlnm:
- raise LookupError(f"Type of {llm_type} model is not set.")
- raise LookupError("Model({}) not authorized".format(mdlnm))
- return model_config
-
- @classmethod
- @DB.connection_context()
- def model_instance(cls, tenant_id, llm_type, llm_name=None, lang="Chinese"):
- model_config = TenantLLMService.get_model_config(tenant_id, llm_type, llm_name)
- if llm_type == LLMType.EMBEDDING.value:
- if model_config["llm_factory"] not in EmbeddingModel:
- return
- return EmbeddingModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
-
- if llm_type == LLMType.RERANK:
- if model_config["llm_factory"] not in RerankModel:
- return
- return RerankModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
-
- if llm_type == LLMType.IMAGE2TEXT.value:
- if model_config["llm_factory"] not in CvModel:
- return
- return CvModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], lang, base_url=model_config["api_base"])
-
- if llm_type == LLMType.CHAT.value:
- if model_config["llm_factory"] not in ChatModel:
- return
- return ChatModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
-
- if llm_type == LLMType.SPEECH2TEXT:
- if model_config["llm_factory"] not in Seq2txtModel:
- return
- return Seq2txtModel[model_config["llm_factory"]](key=model_config["api_key"], model_name=model_config["llm_name"], lang=lang, base_url=model_config["api_base"])
- if llm_type == LLMType.TTS:
- if model_config["llm_factory"] not in TTSModel:
- return
- return TTSModel[model_config["llm_factory"]](
- model_config["api_key"],
- model_config["llm_name"],
- base_url=model_config["api_base"],
- )
-
- @classmethod
- @DB.connection_context()
- def increase_usage(cls, tenant_id, llm_type, used_tokens, llm_name=None):
- e, tenant = TenantService.get_by_id(tenant_id)
- if not e:
- logging.error(f"Tenant not found: {tenant_id}")
- return 0
-
- llm_map = {
- LLMType.EMBEDDING.value: tenant.embd_id,
- LLMType.SPEECH2TEXT.value: tenant.asr_id,
- LLMType.IMAGE2TEXT.value: tenant.img2txt_id,
- LLMType.CHAT.value: tenant.llm_id if not llm_name else llm_name,
- LLMType.RERANK.value: tenant.rerank_id if not llm_name else llm_name,
- LLMType.TTS.value: tenant.tts_id if not llm_name else llm_name,
- }
-
- mdlnm = llm_map.get(llm_type)
- if mdlnm is None:
- logging.error(f"LLM type error: {llm_type}")
- return 0
-
- llm_name, llm_factory = TenantLLMService.split_model_name_and_factory(mdlnm)
-
- try:
- num = (
- cls.model.update(used_tokens=cls.model.used_tokens + used_tokens)
- .where(cls.model.tenant_id == tenant_id, cls.model.llm_name == llm_name, cls.model.llm_factory == llm_factory if llm_factory else True)
- .execute()
- )
- except Exception:
- logging.exception("TenantLLMService.increase_usage got exception,Failed to update used_tokens for tenant_id=%s, llm_name=%s", tenant_id, llm_name)
- return 0
-
- return num
-
- @classmethod
- @DB.connection_context()
- def get_openai_models(cls):
- objs = cls.model.select().where((cls.model.llm_factory == "OpenAI"), ~(cls.model.llm_name == "text-embedding-3-small"), ~(cls.model.llm_name == "text-embedding-3-large")).dicts()
- return list(objs)
-
-
- class LLMBundle:
- def __init__(self, tenant_id, llm_type, llm_name=None, lang="Chinese"):
- self.tenant_id = tenant_id
- self.llm_type = llm_type
- self.llm_name = llm_name
- self.mdl = TenantLLMService.model_instance(tenant_id, llm_type, llm_name, lang=lang)
- assert self.mdl, "Can't find model for {}/{}/{}".format(tenant_id, llm_type, llm_name)
- model_config = TenantLLMService.get_model_config(tenant_id, llm_type, llm_name)
- self.max_length = model_config.get("max_tokens", 8192)
-
- self.is_tools = model_config.get("is_tools", False)
-
- langfuse_keys = TenantLangfuseService.filter_by_tenant(tenant_id=tenant_id)
- if langfuse_keys:
- langfuse = Langfuse(public_key=langfuse_keys.public_key, secret_key=langfuse_keys.secret_key, host=langfuse_keys.host)
- if langfuse.auth_check():
- self.langfuse = langfuse
- self.trace = self.langfuse.trace(name=f"{self.llm_type}-{self.llm_name}")
- else:
- self.langfuse = None
-
- def bind_tools(self, toolcall_session, tools):
- if not self.is_tools:
- logging.warning(f"Model {self.llm_name} does not support tool call, but you have assigned one or more tools to it!")
- return
- self.mdl.bind_tools(toolcall_session, tools)
-
- def encode(self, texts: list):
- if self.langfuse:
- generation = self.trace.generation(name="encode", model=self.llm_name, input={"texts": texts})
-
- embeddings, used_tokens = self.mdl.encode(texts)
- if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
- logging.error("LLMBundle.encode can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
-
- if self.langfuse:
- generation.end(usage_details={"total_tokens": used_tokens})
-
- return embeddings, used_tokens
-
- def encode_queries(self, query: str):
- if self.langfuse:
- generation = self.trace.generation(name="encode_queries", model=self.llm_name, input={"query": query})
-
- emd, used_tokens = self.mdl.encode_queries(query)
- if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
- logging.error("LLMBundle.encode_queries can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
-
- if self.langfuse:
- generation.end(usage_details={"total_tokens": used_tokens})
-
- return emd, used_tokens
-
- def similarity(self, query: str, texts: list):
- if self.langfuse:
- generation = self.trace.generation(name="similarity", model=self.llm_name, input={"query": query, "texts": texts})
-
- sim, used_tokens = self.mdl.similarity(query, texts)
- if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
- logging.error("LLMBundle.similarity can't update token usage for {}/RERANK used_tokens: {}".format(self.tenant_id, used_tokens))
-
- if self.langfuse:
- generation.end(usage_details={"total_tokens": used_tokens})
-
- return sim, used_tokens
-
- def describe(self, image, max_tokens=300):
- if self.langfuse:
- generation = self.trace.generation(name="describe", metadata={"model": self.llm_name})
-
- txt, used_tokens = self.mdl.describe(image)
- if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
- logging.error("LLMBundle.describe can't update token usage for {}/IMAGE2TEXT used_tokens: {}".format(self.tenant_id, used_tokens))
-
- if self.langfuse:
- generation.end(output={"output": txt}, usage_details={"total_tokens": used_tokens})
-
- return txt
-
- def describe_with_prompt(self, image, prompt):
- if self.langfuse:
- generation = self.trace.generation(name="describe_with_prompt", metadata={"model": self.llm_name, "prompt": prompt})
-
- txt, used_tokens = self.mdl.describe_with_prompt(image, prompt)
- if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
- logging.error("LLMBundle.describe can't update token usage for {}/IMAGE2TEXT used_tokens: {}".format(self.tenant_id, used_tokens))
-
- if self.langfuse:
- generation.end(output={"output": txt}, usage_details={"total_tokens": used_tokens})
-
- return txt
-
- def transcription(self, audio):
- if self.langfuse:
- generation = self.trace.generation(name="transcription", metadata={"model": self.llm_name})
-
- txt, used_tokens = self.mdl.transcription(audio)
- if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
- logging.error("LLMBundle.transcription can't update token usage for {}/SEQUENCE2TXT used_tokens: {}".format(self.tenant_id, used_tokens))
-
- if self.langfuse:
- generation.end(output={"output": txt}, usage_details={"total_tokens": used_tokens})
-
- return txt
-
- def tts(self, text):
- if self.langfuse:
- span = self.trace.span(name="tts", input={"text": text})
-
- for chunk in self.mdl.tts(text):
- if isinstance(chunk, int):
- if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, chunk, self.llm_name):
- logging.error("LLMBundle.tts can't update token usage for {}/TTS".format(self.tenant_id))
- return
- yield chunk
-
- if self.langfuse:
- span.end()
-
- def _remove_reasoning_content(self, txt: str) -> str:
- first_think_start = txt.find("<think>")
- if first_think_start == -1:
- return txt
-
- last_think_end = txt.rfind("</think>")
- if last_think_end == -1:
- return txt
-
- if last_think_end < first_think_start:
- return txt
-
- return txt[last_think_end + len("</think>") :]
-
- def chat(self, system, history, gen_conf):
- if self.langfuse:
- generation = self.trace.generation(name="chat", model=self.llm_name, input={"system": system, "history": history})
-
- chat = self.mdl.chat
- if self.is_tools and self.mdl.is_tools:
- chat = self.mdl.chat_with_tools
-
- txt, used_tokens = chat(system, history, gen_conf)
- txt = self._remove_reasoning_content(txt)
-
- if isinstance(txt, int) and not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens, self.llm_name):
- logging.error("LLMBundle.chat can't update token usage for {}/CHAT llm_name: {}, used_tokens: {}".format(self.tenant_id, self.llm_name, used_tokens))
-
- if self.langfuse:
- generation.end(output={"output": txt}, usage_details={"total_tokens": used_tokens})
-
- return txt
-
- def chat_streamly(self, system, history, gen_conf):
- if self.langfuse:
- generation = self.trace.generation(name="chat_streamly", model=self.llm_name, input={"system": system, "history": history})
-
- ans = ""
- chat_streamly = self.mdl.chat_streamly
- total_tokens = 0
- if self.is_tools and self.mdl.is_tools:
- chat_streamly = self.mdl.chat_streamly_with_tools
-
- for txt in chat_streamly(system, history, gen_conf):
- if isinstance(txt, int):
- total_tokens = txt
- if self.langfuse:
- generation.end(output={"output": ans})
- break
-
- if txt.endswith("</think>"):
- ans = ans.rstrip("</think>")
-
- ans += txt
- yield ans
- if total_tokens > 0:
- if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, txt, self.llm_name):
- logging.error("LLMBundle.chat_streamly can't update token usage for {}/CHAT llm_name: {}, content: {}".format(self.tenant_id, self.llm_name, txt))
|