You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

es_conn.py 19KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467
  1. import logging
  2. import re
  3. import json
  4. import time
  5. import os
  6. import copy
  7. from elasticsearch import Elasticsearch, NotFoundError
  8. from elasticsearch_dsl import UpdateByQuery, Q, Search, Index
  9. from elastic_transport import ConnectionTimeout
  10. from rag import settings
  11. from rag.utils import singleton
  12. from api.utils.file_utils import get_project_base_directory
  13. import polars as pl
  14. from rag.utils.doc_store_conn import DocStoreConnection, MatchExpr, OrderByExpr, MatchTextExpr, MatchDenseExpr, \
  15. FusionExpr
  16. from rag.nlp import is_english, rag_tokenizer
  17. ATTEMPT_TIME = 2
  18. @singleton
  19. class ESConnection(DocStoreConnection):
  20. def __init__(self):
  21. self.info = {}
  22. logging.info(f"Use Elasticsearch {settings.ES['hosts']} as the doc engine.")
  23. for _ in range(ATTEMPT_TIME):
  24. try:
  25. self.es = Elasticsearch(
  26. settings.ES["hosts"].split(","),
  27. basic_auth=(settings.ES["username"], settings.ES[
  28. "password"]) if "username" in settings.ES and "password" in settings.ES else None,
  29. verify_certs=False,
  30. timeout=600
  31. )
  32. if self.es:
  33. self.info = self.es.info()
  34. break
  35. except Exception as e:
  36. logging.warning(f"{str(e)}. Waiting Elasticsearch {settings.ES['hosts']} to be healthy.")
  37. time.sleep(5)
  38. if not self.es.ping():
  39. msg = f"Elasticsearch {settings.ES['hosts']} didn't become healthy in 120s."
  40. logging.error(msg)
  41. raise Exception(msg)
  42. v = self.info.get("version", {"number": "8.11.3"})
  43. v = v["number"].split(".")[0]
  44. if int(v) < 8:
  45. msg = f"Elasticsearch version must be greater than or equal to 8, current version: {v}"
  46. logging.error(msg)
  47. raise Exception(msg)
  48. fp_mapping = os.path.join(get_project_base_directory(), "conf", "mapping.json")
  49. if not os.path.exists(fp_mapping):
  50. msg = f"Elasticsearch mapping file not found at {fp_mapping}"
  51. logging.error(msg)
  52. raise Exception(msg)
  53. self.mapping = json.load(open(fp_mapping, "r"))
  54. logging.info(f"Elasticsearch {settings.ES['hosts']} is healthy.")
  55. """
  56. Database operations
  57. """
  58. def dbType(self) -> str:
  59. return "elasticsearch"
  60. def health(self) -> dict:
  61. health_dict = dict(self.es.cluster.health())
  62. health_dict["type"] = "elasticsearch"
  63. return health_dict
  64. """
  65. Table operations
  66. """
  67. def createIdx(self, indexName: str, knowledgebaseId: str, vectorSize: int):
  68. if self.indexExist(indexName, knowledgebaseId):
  69. return True
  70. try:
  71. from elasticsearch.client import IndicesClient
  72. return IndicesClient(self.es).create(index=indexName,
  73. settings=self.mapping["settings"],
  74. mappings=self.mapping["mappings"])
  75. except Exception:
  76. logging.exception("ESConnection.createIndex error %s" % (indexName))
  77. def deleteIdx(self, indexName: str, knowledgebaseId: str):
  78. if len(knowledgebaseId) > 0:
  79. # The index need to be alive after any kb deletion since all kb under this tenant are in one index.
  80. return
  81. try:
  82. self.es.indices.delete(index=indexName, allow_no_indices=True)
  83. except NotFoundError:
  84. pass
  85. except Exception:
  86. logging.exception("ESConnection.deleteIdx error %s" % (indexName))
  87. def indexExist(self, indexName: str, knowledgebaseId: str) -> bool:
  88. s = Index(indexName, self.es)
  89. for i in range(ATTEMPT_TIME):
  90. try:
  91. return s.exists()
  92. except Exception as e:
  93. logging.exception("ESConnection.indexExist got exception")
  94. if str(e).find("Timeout") > 0 or str(e).find("Conflict") > 0:
  95. continue
  96. return False
  97. """
  98. CRUD operations
  99. """
  100. def search(self, selectFields: list[str], highlightFields: list[str], condition: dict, matchExprs: list[MatchExpr],
  101. orderBy: OrderByExpr, offset: int, limit: int, indexNames: str | list[str],
  102. knowledgebaseIds: list[str]) -> list[dict] | pl.DataFrame:
  103. """
  104. Refers to https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
  105. """
  106. if isinstance(indexNames, str):
  107. indexNames = indexNames.split(",")
  108. assert isinstance(indexNames, list) and len(indexNames) > 0
  109. assert "_id" not in condition
  110. bqry = Q("bool", must=[])
  111. condition["kb_id"] = knowledgebaseIds
  112. for k, v in condition.items():
  113. if k == "available_int":
  114. if v == 0:
  115. bqry.filter.append(Q("range", available_int={"lt": 1}))
  116. else:
  117. bqry.filter.append(
  118. Q("bool", must_not=Q("range", available_int={"lt": 1})))
  119. continue
  120. if not v: continue
  121. if isinstance(v, list):
  122. bqry.filter.append(Q("terms", **{k: v}))
  123. elif isinstance(v, str) or isinstance(v, int):
  124. bqry.filter.append(Q("term", **{k: v}))
  125. else:
  126. raise Exception(
  127. f"Condition `{str(k)}={str(v)}` value type is {str(type(v))}, expected to be int, str or list.")
  128. s = Search()
  129. vector_similarity_weight = 0.5
  130. for m in matchExprs:
  131. if isinstance(m, FusionExpr) and m.method == "weighted_sum" and "weights" in m.fusion_params:
  132. assert len(matchExprs) == 3 and isinstance(matchExprs[0], MatchTextExpr) and isinstance(matchExprs[1],
  133. MatchDenseExpr) and isinstance(
  134. matchExprs[2], FusionExpr)
  135. weights = m.fusion_params["weights"]
  136. vector_similarity_weight = float(weights.split(",")[1])
  137. for m in matchExprs:
  138. if isinstance(m, MatchTextExpr):
  139. minimum_should_match = m.extra_options.get("minimum_should_match", 0.0)
  140. if isinstance(minimum_should_match, float):
  141. minimum_should_match = str(int(minimum_should_match * 100)) + "%"
  142. bqry.must.append(Q("query_string", fields=m.fields,
  143. type="best_fields", query=m.matching_text,
  144. minimum_should_match=minimum_should_match,
  145. boost=1))
  146. bqry.boost = 1.0 - vector_similarity_weight
  147. elif isinstance(m, MatchDenseExpr):
  148. assert (bqry is not None)
  149. similarity = 0.0
  150. if "similarity" in m.extra_options:
  151. similarity = m.extra_options["similarity"]
  152. s = s.knn(m.vector_column_name,
  153. m.topn,
  154. m.topn * 2,
  155. query_vector=list(m.embedding_data),
  156. filter=bqry.to_dict(),
  157. similarity=similarity,
  158. )
  159. if bqry:
  160. s = s.query(bqry)
  161. for field in highlightFields:
  162. s = s.highlight(field)
  163. if orderBy:
  164. orders = list()
  165. for field, order in orderBy.fields:
  166. order = "asc" if order == 0 else "desc"
  167. orders.append({field: {"order": order, "unmapped_type": "float",
  168. "mode": "avg", "numeric_type": "double"}})
  169. s = s.sort(*orders)
  170. if limit > 0:
  171. s = s[offset:limit]
  172. q = s.to_dict()
  173. logging.debug(f"ESConnection.search {str(indexNames)} query: " + json.dumps(q))
  174. for i in range(ATTEMPT_TIME):
  175. try:
  176. res = self.es.search(index=indexNames,
  177. body=q,
  178. timeout="600s",
  179. # search_type="dfs_query_then_fetch",
  180. track_total_hits=True,
  181. _source=True)
  182. if str(res.get("timed_out", "")).lower() == "true":
  183. raise Exception("Es Timeout.")
  184. logging.debug(f"ESConnection.search {str(indexNames)} res: " + str(res))
  185. return res
  186. except Exception as e:
  187. logging.exception(f"ESConnection.search {str(indexNames)} query: " + str(q))
  188. if str(e).find("Timeout") > 0:
  189. continue
  190. raise e
  191. logging.error("ESConnection.search timeout for 3 times!")
  192. raise Exception("ESConnection.search timeout.")
  193. def get(self, chunkId: str, indexName: str, knowledgebaseIds: list[str]) -> dict | None:
  194. for i in range(ATTEMPT_TIME):
  195. try:
  196. res = self.es.get(index=(indexName),
  197. id=chunkId, source=True, )
  198. if str(res.get("timed_out", "")).lower() == "true":
  199. raise Exception("Es Timeout.")
  200. chunk = res["_source"]
  201. chunk["id"] = chunkId
  202. return chunk
  203. except NotFoundError:
  204. return None
  205. except Exception as e:
  206. logging.exception(f"ESConnection.get({chunkId}) got exception")
  207. if str(e).find("Timeout") > 0:
  208. continue
  209. raise e
  210. logging.error("ESConnection.get timeout for 3 times!")
  211. raise Exception("ESConnection.get timeout.")
  212. def insert(self, documents: list[dict], indexName: str, knowledgebaseId: str) -> list[str]:
  213. # Refers to https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-bulk.html
  214. operations = []
  215. for d in documents:
  216. assert "_id" not in d
  217. assert "id" in d
  218. d_copy = copy.deepcopy(d)
  219. meta_id = d_copy.pop("id", "")
  220. operations.append(
  221. {"index": {"_index": indexName, "_id": meta_id}})
  222. operations.append(d_copy)
  223. res = []
  224. for _ in range(ATTEMPT_TIME):
  225. try:
  226. res = []
  227. r = self.es.bulk(index=(indexName), operations=operations,
  228. refresh=False, timeout="60s")
  229. if re.search(r"False", str(r["errors"]), re.IGNORECASE):
  230. return res
  231. for item in r["items"]:
  232. for action in ["create", "delete", "index", "update"]:
  233. if action in item and "error" in item[action]:
  234. res.append(str(item[action]["_id"]) + ":" + str(item[action]["error"]))
  235. return res
  236. except Exception as e:
  237. res.append(str(e))
  238. logging.warning("ESConnection.insert got exception: " + str(e))
  239. res = []
  240. if re.search(r"(Timeout|time out)", str(e), re.IGNORECASE):
  241. res.append(str(e))
  242. time.sleep(3)
  243. continue
  244. return res
  245. def update(self, condition: dict, newValue: dict, indexName: str, knowledgebaseId: str) -> bool:
  246. doc = copy.deepcopy(newValue)
  247. doc.pop("id", None)
  248. if "id" in condition and isinstance(condition["id"], str):
  249. # update specific single document
  250. chunkId = condition["id"]
  251. for i in range(ATTEMPT_TIME):
  252. try:
  253. self.es.update(index=indexName, id=chunkId, doc=doc)
  254. return True
  255. except Exception as e:
  256. logging.exception(
  257. f"ESConnection.update(index={indexName}, id={id}, doc={json.dumps(condition, ensure_ascii=False)}) got exception")
  258. if str(e).find("Timeout") > 0:
  259. continue
  260. else:
  261. # update unspecific maybe-multiple documents
  262. bqry = Q("bool")
  263. for k, v in condition.items():
  264. if not isinstance(k, str) or not v:
  265. continue
  266. if isinstance(v, list):
  267. bqry.filter.append(Q("terms", **{k: v}))
  268. elif isinstance(v, str) or isinstance(v, int):
  269. bqry.filter.append(Q("term", **{k: v}))
  270. else:
  271. raise Exception(
  272. f"Condition `{str(k)}={str(v)}` value type is {str(type(v))}, expected to be int, str or list.")
  273. scripts = []
  274. for k, v in newValue.items():
  275. if (not isinstance(k, str) or not v) and k != "available_int":
  276. continue
  277. if isinstance(v, str):
  278. scripts.append(f"ctx._source.{k} = '{v}'")
  279. elif isinstance(v, int):
  280. scripts.append(f"ctx._source.{k} = {v}")
  281. else:
  282. raise Exception(
  283. f"newValue `{str(k)}={str(v)}` value type is {str(type(v))}, expected to be int, str.")
  284. ubq = UpdateByQuery(
  285. index=indexName).using(
  286. self.es).query(bqry)
  287. ubq = ubq.script(source="; ".join(scripts))
  288. ubq = ubq.params(refresh=True)
  289. ubq = ubq.params(slices=5)
  290. ubq = ubq.params(conflicts="proceed")
  291. for i in range(3):
  292. try:
  293. _ = ubq.execute()
  294. return True
  295. except Exception as e:
  296. logging.error("ESConnection.update got exception: " + str(e))
  297. if str(e).find("Timeout") > 0 or str(e).find("Conflict") > 0:
  298. continue
  299. return False
  300. def delete(self, condition: dict, indexName: str, knowledgebaseId: str) -> int:
  301. qry = None
  302. assert "_id" not in condition
  303. if "id" in condition:
  304. chunk_ids = condition["id"]
  305. if not isinstance(chunk_ids, list):
  306. chunk_ids = [chunk_ids]
  307. qry = Q("ids", values=chunk_ids)
  308. else:
  309. qry = Q("bool")
  310. for k, v in condition.items():
  311. if isinstance(v, list):
  312. qry.must.append(Q("terms", **{k: v}))
  313. elif isinstance(v, str) or isinstance(v, int):
  314. qry.must.append(Q("term", **{k: v}))
  315. else:
  316. raise Exception("Condition value must be int, str or list.")
  317. logging.debug("ESConnection.delete query: " + json.dumps(qry.to_dict()))
  318. for _ in range(ATTEMPT_TIME):
  319. try:
  320. res = self.es.delete_by_query(
  321. index=indexName,
  322. body=Search().query(qry).to_dict(),
  323. refresh=True)
  324. return res["deleted"]
  325. except Exception as e:
  326. logging.warning("ESConnection.delete got exception: " + str(e))
  327. if re.search(r"(Timeout|time out)", str(e), re.IGNORECASE):
  328. time.sleep(3)
  329. continue
  330. if re.search(r"(not_found)", str(e), re.IGNORECASE):
  331. return 0
  332. return 0
  333. """
  334. Helper functions for search result
  335. """
  336. def getTotal(self, res):
  337. if isinstance(res["hits"]["total"], type({})):
  338. return res["hits"]["total"]["value"]
  339. return res["hits"]["total"]
  340. def getChunkIds(self, res):
  341. return [d["_id"] for d in res["hits"]["hits"]]
  342. def __getSource(self, res):
  343. rr = []
  344. for d in res["hits"]["hits"]:
  345. d["_source"]["id"] = d["_id"]
  346. d["_source"]["_score"] = d["_score"]
  347. rr.append(d["_source"])
  348. return rr
  349. def getFields(self, res, fields: list[str]) -> dict[str, dict]:
  350. res_fields = {}
  351. if not fields:
  352. return {}
  353. for d in self.__getSource(res):
  354. m = {n: d.get(n) for n in fields if d.get(n) is not None}
  355. for n, v in m.items():
  356. if isinstance(v, list):
  357. m[n] = v
  358. continue
  359. if not isinstance(v, str):
  360. m[n] = str(m[n])
  361. # if n.find("tks") > 0:
  362. # m[n] = rmSpace(m[n])
  363. if m:
  364. res_fields[d["id"]] = m
  365. return res_fields
  366. def getHighlight(self, res, keywords: list[str], fieldnm: str):
  367. ans = {}
  368. for d in res["hits"]["hits"]:
  369. hlts = d.get("highlight")
  370. if not hlts:
  371. continue
  372. txt = "...".join([a for a in list(hlts.items())[0][1]])
  373. if not is_english(txt.split()):
  374. ans[d["_id"]] = txt
  375. continue
  376. txt = d["_source"][fieldnm]
  377. txt = re.sub(r"[\r\n]", " ", txt, flags=re.IGNORECASE | re.MULTILINE)
  378. txts = []
  379. for t in re.split(r"[.?!;\n]", txt):
  380. for w in keywords:
  381. t = re.sub(r"(^|[ .?/'\"\(\)!,:;-])(%s)([ .?/'\"\(\)!,:;-])" % re.escape(w), r"\1<em>\2</em>\3", t,
  382. flags=re.IGNORECASE | re.MULTILINE)
  383. if not re.search(r"<em>[^<>]+</em>", t, flags=re.IGNORECASE | re.MULTILINE):
  384. continue
  385. txts.append(t)
  386. ans[d["_id"]] = "...".join(txts) if txts else "...".join([a for a in list(hlts.items())[0][1]])
  387. return ans
  388. def getAggregation(self, res, fieldnm: str):
  389. agg_field = "aggs_" + fieldnm
  390. if "aggregations" not in res or agg_field not in res["aggregations"]:
  391. return list()
  392. bkts = res["aggregations"][agg_field]["buckets"]
  393. return [(b["key"], b["doc_count"]) for b in bkts]
  394. """
  395. SQL
  396. """
  397. def sql(self, sql: str, fetch_size: int, format: str):
  398. logging.debug(f"ESConnection.sql get sql: {sql}")
  399. sql = re.sub(r"[ `]+", " ", sql)
  400. sql = sql.replace("%", "")
  401. replaces = []
  402. for r in re.finditer(r" ([a-z_]+_l?tks)( like | ?= ?)'([^']+)'", sql):
  403. fld, v = r.group(1), r.group(3)
  404. match = " MATCH({}, '{}', 'operator=OR;minimum_should_match=30%') ".format(
  405. fld, rag_tokenizer.fine_grained_tokenize(rag_tokenizer.tokenize(v)))
  406. replaces.append(
  407. ("{}{}'{}'".format(
  408. r.group(1),
  409. r.group(2),
  410. r.group(3)),
  411. match))
  412. for p, r in replaces:
  413. sql = sql.replace(p, r, 1)
  414. logging.debug(f"ESConnection.sql to es: {sql}")
  415. for i in range(ATTEMPT_TIME):
  416. try:
  417. res = self.es.sql.query(body={"query": sql, "fetch_size": fetch_size}, format=format,
  418. request_timeout="2s")
  419. return res
  420. except ConnectionTimeout:
  421. logging.exception("ESConnection.sql timeout")
  422. continue
  423. except Exception:
  424. logging.exception("ESConnection.sql got exception")
  425. return None
  426. logging.error("ESConnection.sql timeout for 3 times!")
  427. return None