| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377 | 
							- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import json
 - import re
 - import traceback
 - from copy import deepcopy
 - from api.db.services.user_service import UserTenantService
 - from flask import request, Response
 - from flask_login import login_required, current_user
 - 
 - from api.db import LLMType
 - from api.db.services.dialog_service import DialogService, ConversationService, chat, ask
 - from api.db.services.knowledgebase_service import KnowledgebaseService
 - from api.db.services.llm_service import LLMBundle, TenantService, TenantLLMService
 - from api import settings
 - from api.utils.api_utils import get_json_result
 - from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
 - from graphrag.mind_map_extractor import MindMapExtractor
 - 
 - 
 - @manager.route('/set', methods=['POST'])
 - @login_required
 - def set_conversation():
 -     req = request.json
 -     conv_id = req.get("conversation_id")
 -     is_new = req.get("is_new")
 -     del req["is_new"]
 -     if not is_new:
 -         del req["conversation_id"]
 -         try:
 -             if not ConversationService.update_by_id(conv_id, req):
 -                 return get_data_error_result(message="Conversation not found!")
 -             e, conv = ConversationService.get_by_id(conv_id)
 -             if not e:
 -                 return get_data_error_result(
 -                     message="Fail to update a conversation!")
 -             conv = conv.to_dict()
 -             return get_json_result(data=conv)
 -         except Exception as e:
 -             return server_error_response(e)
 - 
 -     try:
 -         e, dia = DialogService.get_by_id(req["dialog_id"])
 -         if not e:
 -             return get_data_error_result(message="Dialog not found")
 -         conv = {
 -             "id": conv_id,
 -             "dialog_id": req["dialog_id"],
 -             "name": req.get("name", "New conversation"),
 -             "message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}]
 -         }
 -         ConversationService.save(**conv)
 -         e, conv = ConversationService.get_by_id(conv["id"])
 -         if not e:
 -             return get_data_error_result(message="Fail to new a conversation!")
 -         conv = conv.to_dict()
 -         return get_json_result(data=conv)
 -     except Exception as e:
 -         return server_error_response(e)
 - 
 - 
 - @manager.route('/get', methods=['GET'])
 - @login_required
 - def get():
 -     conv_id = request.args["conversation_id"]
 -     try:
 -         e, conv = ConversationService.get_by_id(conv_id)
 -         if not e:
 -             return get_data_error_result(message="Conversation not found!")
 -         tenants = UserTenantService.query(user_id=current_user.id)
 -         for tenant in tenants:
 -             if DialogService.query(tenant_id=tenant.tenant_id, id=conv.dialog_id):
 -                 break
 -         else:
 -             return get_json_result(
 -                 data=False, message='Only owner of conversation authorized for this operation.',
 -                 code=settings.RetCode.OPERATING_ERROR)
 -         conv = conv.to_dict()
 -         return get_json_result(data=conv)
 -     except Exception as e:
 -         return server_error_response(e)
 - 
 - 
 - @manager.route('/rm', methods=['POST'])
 - @login_required
 - def rm():
 -     conv_ids = request.json["conversation_ids"]
 -     try:
 -         for cid in conv_ids:
 -             exist, conv = ConversationService.get_by_id(cid)
 -             if not exist:
 -                 return get_data_error_result(message="Conversation not found!")
 -             tenants = UserTenantService.query(user_id=current_user.id)
 -             for tenant in tenants:
 -                 if DialogService.query(tenant_id=tenant.tenant_id, id=conv.dialog_id):
 -                     break
 -             else:
 -                 return get_json_result(
 -                     data=False, message='Only owner of conversation authorized for this operation.',
 -                     code=settings.RetCode.OPERATING_ERROR)
 -             ConversationService.delete_by_id(cid)
 -         return get_json_result(data=True)
 -     except Exception as e:
 -         return server_error_response(e)
 - 
 - 
 - @manager.route('/list', methods=['GET'])
 - @login_required
 - def list_convsersation():
 -     dialog_id = request.args["dialog_id"]
 -     try:
 -         if not DialogService.query(tenant_id=current_user.id, id=dialog_id):
 -             return get_json_result(
 -                 data=False, message='Only owner of dialog authorized for this operation.',
 -                 code=settings.RetCode.OPERATING_ERROR)
 -         convs = ConversationService.query(
 -             dialog_id=dialog_id,
 -             order_by=ConversationService.model.create_time,
 -             reverse=True)
 -         convs = [d.to_dict() for d in convs]
 -         return get_json_result(data=convs)
 -     except Exception as e:
 -         return server_error_response(e)
 - 
 - 
 - @manager.route('/completion', methods=['POST'])
 - @login_required
 - @validate_request("conversation_id", "messages")
 - def completion():
 -     req = request.json
 -     msg = []
 -     for m in req["messages"]:
 -         if m["role"] == "system":
 -             continue
 -         if m["role"] == "assistant" and not msg:
 -             continue
 -         msg.append(m)
 -     message_id = msg[-1].get("id")
 -     try:
 -         e, conv = ConversationService.get_by_id(req["conversation_id"])
 -         if not e:
 -             return get_data_error_result(message="Conversation not found!")
 -         conv.message = deepcopy(req["messages"])
 -         e, dia = DialogService.get_by_id(conv.dialog_id)
 -         if not e:
 -             return get_data_error_result(message="Dialog not found!")
 -         del req["conversation_id"]
 -         del req["messages"]
 - 
 -         if not conv.reference:
 -             conv.reference = []
 -         conv.message.append({"role": "assistant", "content": "", "id": message_id})
 -         conv.reference.append({"chunks": [], "doc_aggs": []})
 - 
 -         def fillin_conv(ans):
 -             nonlocal conv, message_id
 -             if not conv.reference:
 -                 conv.reference.append(ans["reference"])
 -             else:
 -                 conv.reference[-1] = ans["reference"]
 -             conv.message[-1] = {"role": "assistant", "content": ans["answer"],
 -                                 "id": message_id, "prompt": ans.get("prompt", "")}
 -             ans["id"] = message_id
 - 
 -         def stream():
 -             nonlocal dia, msg, req, conv
 -             try:
 -                 for ans in chat(dia, msg, True, **req):
 -                     fillin_conv(ans)
 -                     yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
 -                 ConversationService.update_by_id(conv.id, conv.to_dict())
 -             except Exception as e:
 -                 traceback.print_exc()
 -                 yield "data:" + json.dumps({"code": 500, "message": str(e),
 -                                             "data": {"answer": "**ERROR**: " + str(e), "reference": []}},
 -                                            ensure_ascii=False) + "\n\n"
 -             yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
 - 
 -         if req.get("stream", True):
 -             resp = Response(stream(), mimetype="text/event-stream")
 -             resp.headers.add_header("Cache-control", "no-cache")
 -             resp.headers.add_header("Connection", "keep-alive")
 -             resp.headers.add_header("X-Accel-Buffering", "no")
 -             resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
 -             return resp
 - 
 -         else:
 -             answer = None
 -             for ans in chat(dia, msg, **req):
 -                 answer = ans
 -                 fillin_conv(ans)
 -                 ConversationService.update_by_id(conv.id, conv.to_dict())
 -                 break
 -             return get_json_result(data=answer)
 -     except Exception as e:
 -         return server_error_response(e)
 - 
 - 
 - @manager.route('/tts', methods=['POST'])
 - @login_required
 - def tts():
 -     req = request.json
 -     text = req["text"]
 - 
 -     tenants = TenantService.get_info_by(current_user.id)
 -     if not tenants:
 -         return get_data_error_result(message="Tenant not found!")
 - 
 -     tts_id = tenants[0]["tts_id"]
 -     if not tts_id:
 -         return get_data_error_result(message="No default TTS model is set")
 - 
 -     tts_mdl = LLMBundle(tenants[0]["tenant_id"], LLMType.TTS, tts_id)
 - 
 -     def stream_audio():
 -         try:
 -             for txt in re.split(r"[,。/《》?;:!\n\r:;]+", text):
 -                 for chunk in tts_mdl.tts(txt):
 -                     yield chunk
 -         except Exception as e:
 -             yield ("data:" + json.dumps({"code": 500, "message": str(e),
 -                                          "data": {"answer": "**ERROR**: " + str(e)}},
 -                                         ensure_ascii=False)).encode('utf-8')
 - 
 -     resp = Response(stream_audio(), mimetype="audio/mpeg")
 -     resp.headers.add_header("Cache-Control", "no-cache")
 -     resp.headers.add_header("Connection", "keep-alive")
 -     resp.headers.add_header("X-Accel-Buffering", "no")
 - 
 -     return resp
 - 
 - 
 - @manager.route('/delete_msg', methods=['POST'])
 - @login_required
 - @validate_request("conversation_id", "message_id")
 - def delete_msg():
 -     req = request.json
 -     e, conv = ConversationService.get_by_id(req["conversation_id"])
 -     if not e:
 -         return get_data_error_result(message="Conversation not found!")
 - 
 -     conv = conv.to_dict()
 -     for i, msg in enumerate(conv["message"]):
 -         if req["message_id"] != msg.get("id", ""):
 -             continue
 -         assert conv["message"][i + 1]["id"] == req["message_id"]
 -         conv["message"].pop(i)
 -         conv["message"].pop(i)
 -         conv["reference"].pop(max(0, i // 2 - 1))
 -         break
 - 
 -     ConversationService.update_by_id(conv["id"], conv)
 -     return get_json_result(data=conv)
 - 
 - 
 - @manager.route('/thumbup', methods=['POST'])
 - @login_required
 - @validate_request("conversation_id", "message_id")
 - def thumbup():
 -     req = request.json
 -     e, conv = ConversationService.get_by_id(req["conversation_id"])
 -     if not e:
 -         return get_data_error_result(message="Conversation not found!")
 -     up_down = req.get("set")
 -     feedback = req.get("feedback", "")
 -     conv = conv.to_dict()
 -     for i, msg in enumerate(conv["message"]):
 -         if req["message_id"] == msg.get("id", "") and msg.get("role", "") == "assistant":
 -             if up_down:
 -                 msg["thumbup"] = True
 -                 if "feedback" in msg: del msg["feedback"]
 -             else:
 -                 msg["thumbup"] = False
 -                 if feedback: msg["feedback"] = feedback
 -             break
 - 
 -     ConversationService.update_by_id(conv["id"], conv)
 -     return get_json_result(data=conv)
 - 
 - 
 - @manager.route('/ask', methods=['POST'])
 - @login_required
 - @validate_request("question", "kb_ids")
 - def ask_about():
 -     req = request.json
 -     uid = current_user.id
 - 
 -     def stream():
 -         nonlocal req, uid
 -         try:
 -             for ans in ask(req["question"], req["kb_ids"], uid):
 -                 yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
 -         except Exception as e:
 -             yield "data:" + json.dumps({"code": 500, "message": str(e),
 -                                         "data": {"answer": "**ERROR**: " + str(e), "reference": []}},
 -                                        ensure_ascii=False) + "\n\n"
 -         yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
 - 
 -     resp = Response(stream(), mimetype="text/event-stream")
 -     resp.headers.add_header("Cache-control", "no-cache")
 -     resp.headers.add_header("Connection", "keep-alive")
 -     resp.headers.add_header("X-Accel-Buffering", "no")
 -     resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
 -     return resp
 - 
 - 
 - @manager.route('/mindmap', methods=['POST'])
 - @login_required
 - @validate_request("question", "kb_ids")
 - def mindmap():
 -     req = request.json
 -     kb_ids = req["kb_ids"]
 -     e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
 -     if not e:
 -         return get_data_error_result(message="Knowledgebase not found!")
 - 
 -     embd_mdl = TenantLLMService.model_instance(
 -         kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
 -     chat_mdl = LLMBundle(current_user.id, LLMType.CHAT)
 -     ranks = settings.retrievaler.retrieval(req["question"], embd_mdl, kb.tenant_id, kb_ids, 1, 12,
 -                                            0.3, 0.3, aggs=False)
 -     mindmap = MindMapExtractor(chat_mdl)
 -     mind_map = mindmap([c["content_with_weight"] for c in ranks["chunks"]]).output
 -     if "error" in mind_map:
 -         return server_error_response(Exception(mind_map["error"]))
 -     return get_json_result(data=mind_map)
 - 
 - 
 - @manager.route('/related_questions', methods=['POST'])
 - @login_required
 - @validate_request("question")
 - def related_questions():
 -     req = request.json
 -     question = req["question"]
 -     chat_mdl = LLMBundle(current_user.id, LLMType.CHAT)
 -     prompt = """
 - Objective: To generate search terms related to the user's search keywords, helping users find more valuable information.
 - Instructions:
 -  - Based on the keywords provided by the user, generate 5-10 related search terms.
 -  - Each search term should be directly or indirectly related to the keyword, guiding the user to find more valuable information.
 -  - Use common, general terms as much as possible, avoiding obscure words or technical jargon.
 -  - Keep the term length between 2-4 words, concise and clear.
 -  - DO NOT translate, use the language of the original keywords.
 - 
 - ### Example:
 - Keywords: Chinese football
 - Related search terms:
 - 1. Current status of Chinese football
 - 2. Reform of Chinese football
 - 3. Youth training of Chinese football
 - 4. Chinese football in the Asian Cup
 - 5. Chinese football in the World Cup
 - 
 - Reason:
 -  - When searching, users often only use one or two keywords, making it difficult to fully express their information needs.
 -  - Generating related search terms can help users dig deeper into relevant information and improve search efficiency. 
 -  - At the same time, related terms can also help search engines better understand user needs and return more accurate search results.
 -  
 - """
 -     ans = chat_mdl.chat(prompt, [{"role": "user", "content": f"""
 - Keywords: {question}
 - Related search terms:
 -     """}], {"temperature": 0.9})
 -     return get_json_result(data=[re.sub(r"^[0-9]\. ", "", a) for a in ans.split("\n") if re.match(r"^[0-9]\. ", a)])
 
 
  |