| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
-
- import copy
- import re
-
- from api.db import ParserType
- from rag.nlp import rag_tokenizer, tokenize, tokenize_table, add_positions, bullets_category, title_frequency, tokenize_chunks
- from deepdoc.parser import PdfParser, PlainParser
- from rag.utils import num_tokens_from_string
-
-
- class Pdf(PdfParser):
- def __init__(self):
- self.model_speciess = ParserType.MANUAL.value
- super().__init__()
-
- def __call__(self, filename, binary=None, from_page=0,
- to_page=100000, zoomin=3, callback=None):
- from timeit import default_timer as timer
- start = timer()
- callback(msg="OCR is running...")
- self.__images__(
- filename if not binary else binary,
- zoomin,
- from_page,
- to_page,
- callback
- )
- callback(msg="OCR finished.")
- # for bb in self.boxes:
- # for b in bb:
- # print(b)
- print("OCR:", timer() - start)
-
- self._layouts_rec(zoomin)
- callback(0.65, "Layout analysis finished.")
- print("layouts:", timer() - start)
- self._table_transformer_job(zoomin)
- callback(0.67, "Table analysis finished.")
- self._text_merge()
- tbls = self._extract_table_figure(True, zoomin, True, True)
- self._concat_downward()
- self._filter_forpages()
- callback(0.68, "Text merging finished")
-
- # clean mess
- for b in self.boxes:
- b["text"] = re.sub(r"([\t ]|\u3000){2,}", " ", b["text"].strip())
-
- return [(b["text"], b.get("layout_no", ""), self.get_position(b, zoomin))
- for i, b in enumerate(self.boxes)], tbls
-
-
- def chunk(filename, binary=None, from_page=0, to_page=100000,
- lang="Chinese", callback=None, **kwargs):
- """
- Only pdf is supported.
- """
- pdf_parser = None
-
- if re.search(r"\.pdf$", filename, re.IGNORECASE):
- pdf_parser = Pdf() if kwargs.get(
- "parser_config", {}).get(
- "layout_recognize", True) else PlainParser()
- sections, tbls = pdf_parser(filename if not binary else binary,
- from_page=from_page, to_page=to_page, callback=callback)
- if sections and len(sections[0]) < 3:
- sections = [(t, l, [[0] * 5]) for t, l in sections]
-
- else:
- raise NotImplementedError("file type not supported yet(pdf supported)")
- doc = {
- "docnm_kwd": filename
- }
- doc["title_tks"] = rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", doc["docnm_kwd"]))
- doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
- # is it English
- eng = lang.lower() == "english" # pdf_parser.is_english
-
- # set pivot using the most frequent type of title,
- # then merge between 2 pivot
- if len(sections) > 0 and len(pdf_parser.outlines) / len(sections) > 0.1:
- max_lvl = max([lvl for _, lvl in pdf_parser.outlines])
- most_level = max(0, max_lvl - 1)
- levels = []
- for txt, _, _ in sections:
- for t, lvl in pdf_parser.outlines:
- tks = set([t[i] + t[i + 1] for i in range(len(t) - 1)])
- tks_ = set([txt[i] + txt[i + 1]
- for i in range(min(len(t), len(txt) - 1))])
- if len(set(tks & tks_)) / max([len(tks), len(tks_), 1]) > 0.8:
- levels.append(lvl)
- break
- else:
- levels.append(max_lvl + 1)
-
- else:
- bull = bullets_category([txt for txt, _, _ in sections])
- most_level, levels = title_frequency(
- bull, [(txt, l) for txt, l, poss in sections])
-
- assert len(sections) == len(levels)
- sec_ids = []
- sid = 0
- for i, lvl in enumerate(levels):
- if lvl <= most_level and i > 0 and lvl != levels[i - 1]:
- sid += 1
- sec_ids.append(sid)
- # print(lvl, self.boxes[i]["text"], most_level, sid)
-
- sections = [(txt, sec_ids[i], poss)
- for i, (txt, _, poss) in enumerate(sections)]
- for (img, rows), poss in tbls:
- if not rows: continue
- sections.append((rows if isinstance(rows, str) else rows[0], -1,
- [(p[0] + 1 - from_page, p[1], p[2], p[3], p[4]) for p in poss]))
-
- def tag(pn, left, right, top, bottom):
- if pn + left + right + top + bottom == 0:
- return ""
- return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##" \
- .format(pn, left, right, top, bottom)
-
- chunks = []
- last_sid = -2
- tk_cnt = 0
- for txt, sec_id, poss in sorted(sections, key=lambda x: (
- x[-1][0][0], x[-1][0][3], x[-1][0][1])):
- poss = "\t".join([tag(*pos) for pos in poss])
- if tk_cnt < 32 or (tk_cnt < 1024 and (sec_id == last_sid or sec_id == -1)):
- if chunks:
- chunks[-1] += "\n" + txt + poss
- tk_cnt += num_tokens_from_string(txt)
- continue
- chunks.append(txt + poss)
- tk_cnt = num_tokens_from_string(txt)
- if sec_id > -1:
- last_sid = sec_id
-
- res = tokenize_table(tbls, doc, eng)
- res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser))
- return res
-
-
- if __name__ == "__main__":
- import sys
-
-
- def dummy(prog=None, msg=""):
- pass
-
-
- chunk(sys.argv[1], callback=dummy)
|