| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151 |
- import copy
- import re
-
- from api.db import ParserType
- from rag.nlp import huqie, tokenize, tokenize_table, add_positions, bullets_category, title_frequency
- from deepdoc.parser import PdfParser
- from rag.utils import num_tokens_from_string
-
-
- class Pdf(PdfParser):
- def __init__(self):
- self.model_speciess = ParserType.MANUAL.value
- super().__init__()
-
- def __call__(self, filename, binary=None, from_page=0,
- to_page=100000, zoomin=3, callback=None):
- from timeit import default_timer as timer
- start = timer()
- callback(msg="OCR is running...")
- self.__images__(
- filename if not binary else binary,
- zoomin,
- from_page,
- to_page,
- callback
- )
- callback(msg="OCR finished.")
- #for bb in self.boxes:
- # for b in bb:
- # print(b)
- print("OCR:", timer()-start)
-
- def get_position(bx):
- poss = []
- pn = bx["page_number"]
- top = bx["top"] - self.page_cum_height[pn - 1]
- bott = bx["bottom"] - self.page_cum_height[pn - 1]
- poss.append((pn, bx["x0"], bx["x1"], top, min(bott, self.page_images[pn-1].size[1]/zoomin)))
- while bott * zoomin > self.page_images[pn - 1].size[1]:
- bott -= self.page_images[pn- 1].size[1] / zoomin
- top = 0
- pn += 1
- poss.append((pn, bx["x0"], bx["x1"], top, min(bott, self.page_images[pn - 1].size[1] / zoomin)))
- return poss
-
- def tag(pn, left, right, top, bottom):
- return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##" \
- .format(pn, left, right, top, bottom)
-
- self._layouts_rec(zoomin)
- callback(0.65, "Layout analysis finished.")
- print("paddle layouts:", timer() - start)
- self._table_transformer_job(zoomin)
- callback(0.67, "Table analysis finished.")
- self._text_merge()
- tbls = self._extract_table_figure(True, zoomin, True, True)
- self._naive_vertical_merge()
- self._filter_forpages()
- callback(0.68, "Text merging finished")
-
- # clean mess
- for b in self.boxes:
- b["text"] = re.sub(r"([\t ]|\u3000){2,}", " ", b["text"].strip())
-
- # merge chunks with the same bullets
- self._merge_with_same_bullet()
-
- # set pivot using the most frequent type of title,
- # then merge between 2 pivot
- bull = bullets_category([b["text"] for b in self.boxes])
- most_level, levels = title_frequency(bull, [(b["text"], b.get("layout_no","")) for b in self.boxes])
- assert len(self.boxes) == len(levels)
- sec_ids = []
- sid = 0
- for i, lvl in enumerate(levels):
- if lvl <= most_level: sid += 1
- sec_ids.append(sid)
- #print(lvl, self.boxes[i]["text"], most_level)
-
- sections = [(b["text"], sec_ids[i], get_position(b)) for i, b in enumerate(self.boxes)]
- for (img, rows), poss in tbls:
- sections.append((rows[0], -1, [(p[0]+1, p[1], p[2], p[3], p[4]) for p in poss]))
-
- chunks = []
- last_sid = -2
- for txt, sec_id, poss in sorted(sections, key=lambda x: (x[-1][0][0], x[-1][0][3], x[-1][0][1])):
- poss = "\t".join([tag(*pos) for pos in poss])
- if sec_id == last_sid or sec_id == -1:
- if chunks:
- chunks[-1] += "\n" + txt + poss
- continue
- chunks.append(txt + poss)
- if sec_id >-1: last_sid = sec_id
- return chunks
-
-
- def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
- """
- Only pdf is supported.
- """
- pdf_parser = None
-
- if re.search(r"\.pdf$", filename, re.IGNORECASE):
- pdf_parser = Pdf()
- cks = pdf_parser(filename if not binary else binary,
- from_page=from_page, to_page=to_page, callback=callback)
- else: raise NotImplementedError("file type not supported yet(pdf supported)")
- doc = {
- "docnm_kwd": filename
- }
- doc["title_tks"] = huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", doc["docnm_kwd"]))
- doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
- # is it English
- eng = lang.lower() == "english"#pdf_parser.is_english
-
- i = 0
- chunk = []
- tk_cnt = 0
- res = []
- def add_chunk():
- nonlocal chunk, res, doc, pdf_parser, tk_cnt
- d = copy.deepcopy(doc)
- ck = "\n".join(chunk)
- tokenize(d, pdf_parser.remove_tag(ck), eng)
- d["image"], poss = pdf_parser.crop(ck, need_position=True)
- add_positions(d, poss)
- res.append(d)
- chunk = []
- tk_cnt = 0
-
- while i < len(cks):
- if tk_cnt > 256: add_chunk()
- txt = cks[i]
- txt_ = pdf_parser.remove_tag(txt)
- i += 1
- cnt = num_tokens_from_string(txt_)
- chunk.append(txt)
- tk_cnt += cnt
- if chunk: add_chunk()
-
- for i, d in enumerate(res):
- print(d)
- # d["image"].save(f"./logs/{i}.jpg")
- return res
-
-
- if __name__ == "__main__":
- import sys
- def dummy(prog=None, msg=""):
- pass
- chunk(sys.argv[1], callback=dummy)
|