| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237 | 
							- #
 - #  Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import hashlib
 - import re
 - 
 - import numpy as np
 - from flask import request
 - from flask_login import login_required, current_user
 - 
 - from rag.nlp import search, huqie
 - from rag.utils import ELASTICSEARCH, rmSpace
 - from api.db import LLMType
 - from api.db.services import duplicate_name
 - from api.db.services.kb_service import KnowledgebaseService
 - from api.db.services.llm_service import TenantLLMService
 - from api.db.services.user_service import UserTenantService
 - from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
 - from api.db.services.document_service import DocumentService
 - from api.settings import RetCode
 - from api.utils.api_utils import get_json_result
 - 
 - retrival = search.Dealer(ELASTICSEARCH)
 - 
 - @manager.route('/list', methods=['POST'])
 - @login_required
 - @validate_request("doc_id")
 - def list():
 -     req = request.json
 -     doc_id = req["doc_id"]
 -     page = int(req.get("page", 1))
 -     size = int(req.get("size", 30))
 -     question = req.get("keywords", "")
 -     try:
 -         tenant_id = DocumentService.get_tenant_id(req["doc_id"])
 -         if not tenant_id: return get_data_error_result(retmsg="Tenant not found!")
 -         query = {
 -             "doc_ids": [doc_id], "page": page, "size": size, "question": question
 -         }
 -         if "available_int" in req: query["available_int"] = int(req["available_int"])
 -         sres = retrival.search(query, search.index_name(tenant_id))
 -         res = {"total": sres.total, "chunks": []}
 -         for id in sres.ids:
 -             d = {
 -                 "chunk_id": id,
 -                 "content_ltks": rmSpace(sres.highlight[id]) if question else sres.field[id]["content_ltks"],
 -                 "doc_id": sres.field[id]["doc_id"],
 -                 "docnm_kwd": sres.field[id]["docnm_kwd"],
 -                 "important_kwd": sres.field[id].get("important_kwd", []),
 -                 "img_id": sres.field[id].get("img_id", ""),
 -                 "available_int": sres.field[id].get("available_int", 1),
 -             }
 -             res["chunks"].append(d)
 -         return get_json_result(data=res)
 -     except Exception as e:
 -         if str(e).find("not_found") > 0:
 -             return get_json_result(data=False, retmsg=f'Index not found!',
 -                             retcode=RetCode.DATA_ERROR)
 -         return server_error_response(e)
 - 
 - 
 - @manager.route('/get', methods=['GET'])
 - @login_required
 - def get():
 -     chunk_id = request.args["chunk_id"]
 -     try:
 -         tenants = UserTenantService.query(user_id=current_user.id)
 -         if not tenants:
 -             return get_data_error_result(retmsg="Tenant not found!")
 -         res = ELASTICSEARCH.get(chunk_id, search.index_name(tenants[0].tenant_id))
 -         if not res.get("found"):return server_error_response("Chunk not found")
 -         id = res["_id"]
 -         res = res["_source"]
 -         res["chunk_id"] = id
 -         k = []
 -         for n in res.keys():
 -             if re.search(r"(_vec$|_sm_)", n):
 -                 k.append(n)
 -             if re.search(r"(_tks|_ltks)", n):
 -                 res[n] = rmSpace(res[n])
 -         for n in k: del res[n]
 - 
 -         return get_json_result(data=res)
 -     except Exception as e:
 -         if str(e).find("NotFoundError") >= 0:
 -             return get_json_result(data=False, retmsg=f'Chunk not found!',
 -                                    retcode=RetCode.DATA_ERROR)
 -         return server_error_response(e)
 - 
 - 
 - @manager.route('/set', methods=['POST'])
 - @login_required
 - @validate_request("doc_id", "chunk_id", "content_ltks", "important_kwd", "docnm_kwd")
 - def set():
 -     req = request.json
 -     d = {"id": req["chunk_id"]}
 -     d["content_ltks"] = huqie.qie(req["content_ltks"])
 -     d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
 -     d["important_kwd"] = req["important_kwd"]
 -     d["important_tks"] = huqie.qie(" ".join(req["important_kwd"]))
 -     if "available_int" in req: d["available_int"] = req["available_int"]
 - 
 -     try:
 -         tenant_id = DocumentService.get_tenant_id(req["doc_id"])
 -         if not tenant_id: return get_data_error_result(retmsg="Tenant not found!")
 -         embd_mdl = TenantLLMService.model_instance(tenant_id, LLMType.EMBEDDING.value)
 -         v, c = embd_mdl.encode([req["docnm_kwd"], req["content_ltks"]])
 -         v = 0.1 * v[0] + 0.9 * v[1]
 -         d["q_%d_vec"%len(v)] = v.tolist()
 -         ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
 -         return get_json_result(data=True)
 -     except Exception as e:
 -         return server_error_response(e)
 - 
 - 
 - @manager.route('/switch', methods=['POST'])
 - @login_required
 - @validate_request("chunk_ids", "available_int", "doc_id")
 - def switch():
 -     req = request.json
 -     try:
 -         tenant_id = DocumentService.get_tenant_id(req["doc_id"])
 -         if not tenant_id: return get_data_error_result(retmsg="Tenant not found!")
 -         if not ELASTICSEARCH.upsert([{"id": i, "available_int": int(req["available_int"])} for i in req["chunk_ids"]],
 -                              search.index_name(tenant_id)):
 -             return get_data_error_result(retmsg="Index updating failure")
 -         return get_json_result(data=True)
 -     except Exception as e:
 -         return server_error_response(e)
 - 
 - 
 - 
 - @manager.route('/create', methods=['POST'])
 - @login_required
 - @validate_request("doc_id", "content_ltks", "important_kwd")
 - def create():
 -     req = request.json
 -     md5 = hashlib.md5()
 -     md5.update((req["content_ltks"] + req["doc_id"]).encode("utf-8"))
 -     chunck_id = md5.hexdigest()
 -     d = {"id": chunck_id, "content_ltks": huqie.qie(req["content_ltks"])}
 -     d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
 -     d["important_kwd"] = req["important_kwd"]
 -     d["important_tks"] = huqie.qie(" ".join(req["important_kwd"]))
 - 
 -     try:
 -         e, doc = DocumentService.get_by_id(req["doc_id"])
 -         if not e: return get_data_error_result(retmsg="Document not found!")
 -         d["kb_id"] = [doc.kb_id]
 -         d["docnm_kwd"] = doc.name
 -         d["doc_id"] = doc.id
 - 
 -         tenant_id = DocumentService.get_tenant_id(req["doc_id"])
 -         if not tenant_id: return get_data_error_result(retmsg="Tenant not found!")
 - 
 -         embd_mdl = TenantLLMService.model_instance(tenant_id, LLMType.EMBEDDING.value)
 -         v, c = embd_mdl.encode([doc.name, req["content_ltks"]])
 -         DocumentService.increment_chunk_num(req["doc_id"], doc.kb_id, c, 1, 0)
 -         v = 0.1 * v[0] + 0.9 * v[1]
 -         d["q_%d_vec"%len(v)] = v.tolist()
 -         ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
 -         return get_json_result(data={"chunk_id": chunck_id})
 -     except Exception as e:
 -         return server_error_response(e)
 - 
 - 
 - @manager.route('/retrieval_test', methods=['POST'])
 - @login_required
 - @validate_request("kb_id", "question")
 - def retrieval_test():
 -     req = request.json
 -     page = int(req.get("page", 1))
 -     size = int(req.get("size", 30))
 -     question = req["question"]
 -     kb_id = req["kb_id"]
 -     doc_ids = req.get("doc_ids", [])
 -     similarity_threshold = float(req.get("similarity_threshold", 0.4))
 -     vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
 -     top = int(req.get("top", 1024))
 -     try:
 -         e, kb = KnowledgebaseService.get_by_id(kb_id)
 -         if not e:
 -             return get_data_error_result(retmsg="Knowledgebase not found!")
 - 
 -         embd_mdl = TenantLLMService.model_instance(kb.tenant_id, LLMType.EMBEDDING.value)
 -         sres = retrival.search({"kb_ids": [kb_id], "doc_ids": doc_ids, "size": top,
 -                                 "question": question, "vector": True,
 -                                 "similarity": similarity_threshold},
 -                                search.index_name(kb.tenant_id),
 -                                embd_mdl)
 - 
 -         sim, tsim, vsim = retrival.rerank(sres, question, 1-vector_similarity_weight, vector_similarity_weight)
 -         idx = np.argsort(sim*-1)
 -         ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
 -         start_idx = (page-1)*size
 -         for i in idx:
 -             ranks["total"] += 1
 -             if sim[i] < similarity_threshold: break
 -             start_idx -= 1
 -             if start_idx >= 0:continue
 -             if len(ranks["chunks"]) == size:continue
 -             id = sres.ids[i]
 -             dnm = sres.field[id]["docnm_kwd"]
 -             d = {
 -                 "chunk_id": id,
 -                 "content_ltks": sres.field[id]["content_ltks"],
 -                 "doc_id": sres.field[id]["doc_id"],
 -                 "docnm_kwd": dnm,
 -                 "kb_id": sres.field[id]["kb_id"],
 -                 "important_kwd": sres.field[id].get("important_kwd", []),
 -                 "img_id": sres.field[id].get("img_id", ""),
 -                 "similarity": sim[i],
 -                 "vector_similarity": vsim[i],
 -                 "term_similarity": tsim[i]
 -             }
 -             ranks["chunks"].append(d)
 -             if dnm not in ranks["doc_aggs"]:ranks["doc_aggs"][dnm] = 0
 -             ranks["doc_aggs"][dnm] += 1
 - 
 -         return get_json_result(data=ranks)
 -     except Exception as e:
 -         if str(e).find("not_found") > 0:
 -             return get_json_result(data=False, retmsg=f'Index not found!',
 -                             retcode=RetCode.DATA_ERROR)
 -         return server_error_response(e)
 
 
  |