| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237 |
- #
- # Copyright 2019 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import hashlib
- import re
-
- import numpy as np
- from flask import request
- from flask_login import login_required, current_user
-
- from rag.nlp import search, huqie
- from rag.utils import ELASTICSEARCH, rmSpace
- from api.db import LLMType
- from api.db.services import duplicate_name
- from api.db.services.kb_service import KnowledgebaseService
- from api.db.services.llm_service import TenantLLMService
- from api.db.services.user_service import UserTenantService
- from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
- from api.db.services.document_service import DocumentService
- from api.settings import RetCode
- from api.utils.api_utils import get_json_result
-
- retrival = search.Dealer(ELASTICSEARCH)
-
- @manager.route('/list', methods=['POST'])
- @login_required
- @validate_request("doc_id")
- def list():
- req = request.json
- doc_id = req["doc_id"]
- page = int(req.get("page", 1))
- size = int(req.get("size", 30))
- question = req.get("keywords", "")
- try:
- tenant_id = DocumentService.get_tenant_id(req["doc_id"])
- if not tenant_id: return get_data_error_result(retmsg="Tenant not found!")
- query = {
- "doc_ids": [doc_id], "page": page, "size": size, "question": question
- }
- if "available_int" in req: query["available_int"] = int(req["available_int"])
- sres = retrival.search(query, search.index_name(tenant_id))
- res = {"total": sres.total, "chunks": []}
- for id in sres.ids:
- d = {
- "chunk_id": id,
- "content_ltks": rmSpace(sres.highlight[id]) if question else sres.field[id]["content_ltks"],
- "doc_id": sres.field[id]["doc_id"],
- "docnm_kwd": sres.field[id]["docnm_kwd"],
- "important_kwd": sres.field[id].get("important_kwd", []),
- "img_id": sres.field[id].get("img_id", ""),
- "available_int": sres.field[id].get("available_int", 1),
- }
- res["chunks"].append(d)
- return get_json_result(data=res)
- except Exception as e:
- if str(e).find("not_found") > 0:
- return get_json_result(data=False, retmsg=f'Index not found!',
- retcode=RetCode.DATA_ERROR)
- return server_error_response(e)
-
-
- @manager.route('/get', methods=['GET'])
- @login_required
- def get():
- chunk_id = request.args["chunk_id"]
- try:
- tenants = UserTenantService.query(user_id=current_user.id)
- if not tenants:
- return get_data_error_result(retmsg="Tenant not found!")
- res = ELASTICSEARCH.get(chunk_id, search.index_name(tenants[0].tenant_id))
- if not res.get("found"):return server_error_response("Chunk not found")
- id = res["_id"]
- res = res["_source"]
- res["chunk_id"] = id
- k = []
- for n in res.keys():
- if re.search(r"(_vec$|_sm_)", n):
- k.append(n)
- if re.search(r"(_tks|_ltks)", n):
- res[n] = rmSpace(res[n])
- for n in k: del res[n]
-
- return get_json_result(data=res)
- except Exception as e:
- if str(e).find("NotFoundError") >= 0:
- return get_json_result(data=False, retmsg=f'Chunk not found!',
- retcode=RetCode.DATA_ERROR)
- return server_error_response(e)
-
-
- @manager.route('/set', methods=['POST'])
- @login_required
- @validate_request("doc_id", "chunk_id", "content_ltks", "important_kwd", "docnm_kwd")
- def set():
- req = request.json
- d = {"id": req["chunk_id"]}
- d["content_ltks"] = huqie.qie(req["content_ltks"])
- d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
- d["important_kwd"] = req["important_kwd"]
- d["important_tks"] = huqie.qie(" ".join(req["important_kwd"]))
- if "available_int" in req: d["available_int"] = req["available_int"]
-
- try:
- tenant_id = DocumentService.get_tenant_id(req["doc_id"])
- if not tenant_id: return get_data_error_result(retmsg="Tenant not found!")
- embd_mdl = TenantLLMService.model_instance(tenant_id, LLMType.EMBEDDING.value)
- v, c = embd_mdl.encode([req["docnm_kwd"], req["content_ltks"]])
- v = 0.1 * v[0] + 0.9 * v[1]
- d["q_%d_vec"%len(v)] = v.tolist()
- ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
- return get_json_result(data=True)
- except Exception as e:
- return server_error_response(e)
-
-
- @manager.route('/switch', methods=['POST'])
- @login_required
- @validate_request("chunk_ids", "available_int", "doc_id")
- def switch():
- req = request.json
- try:
- tenant_id = DocumentService.get_tenant_id(req["doc_id"])
- if not tenant_id: return get_data_error_result(retmsg="Tenant not found!")
- if not ELASTICSEARCH.upsert([{"id": i, "available_int": int(req["available_int"])} for i in req["chunk_ids"]],
- search.index_name(tenant_id)):
- return get_data_error_result(retmsg="Index updating failure")
- return get_json_result(data=True)
- except Exception as e:
- return server_error_response(e)
-
-
-
- @manager.route('/create', methods=['POST'])
- @login_required
- @validate_request("doc_id", "content_ltks", "important_kwd")
- def create():
- req = request.json
- md5 = hashlib.md5()
- md5.update((req["content_ltks"] + req["doc_id"]).encode("utf-8"))
- chunck_id = md5.hexdigest()
- d = {"id": chunck_id, "content_ltks": huqie.qie(req["content_ltks"])}
- d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
- d["important_kwd"] = req["important_kwd"]
- d["important_tks"] = huqie.qie(" ".join(req["important_kwd"]))
-
- try:
- e, doc = DocumentService.get_by_id(req["doc_id"])
- if not e: return get_data_error_result(retmsg="Document not found!")
- d["kb_id"] = [doc.kb_id]
- d["docnm_kwd"] = doc.name
- d["doc_id"] = doc.id
-
- tenant_id = DocumentService.get_tenant_id(req["doc_id"])
- if not tenant_id: return get_data_error_result(retmsg="Tenant not found!")
-
- embd_mdl = TenantLLMService.model_instance(tenant_id, LLMType.EMBEDDING.value)
- v, c = embd_mdl.encode([doc.name, req["content_ltks"]])
- DocumentService.increment_chunk_num(req["doc_id"], doc.kb_id, c, 1, 0)
- v = 0.1 * v[0] + 0.9 * v[1]
- d["q_%d_vec"%len(v)] = v.tolist()
- ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
- return get_json_result(data={"chunk_id": chunck_id})
- except Exception as e:
- return server_error_response(e)
-
-
- @manager.route('/retrieval_test', methods=['POST'])
- @login_required
- @validate_request("kb_id", "question")
- def retrieval_test():
- req = request.json
- page = int(req.get("page", 1))
- size = int(req.get("size", 30))
- question = req["question"]
- kb_id = req["kb_id"]
- doc_ids = req.get("doc_ids", [])
- similarity_threshold = float(req.get("similarity_threshold", 0.4))
- vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
- top = int(req.get("top", 1024))
- try:
- e, kb = KnowledgebaseService.get_by_id(kb_id)
- if not e:
- return get_data_error_result(retmsg="Knowledgebase not found!")
-
- embd_mdl = TenantLLMService.model_instance(kb.tenant_id, LLMType.EMBEDDING.value)
- sres = retrival.search({"kb_ids": [kb_id], "doc_ids": doc_ids, "size": top,
- "question": question, "vector": True,
- "similarity": similarity_threshold},
- search.index_name(kb.tenant_id),
- embd_mdl)
-
- sim, tsim, vsim = retrival.rerank(sres, question, 1-vector_similarity_weight, vector_similarity_weight)
- idx = np.argsort(sim*-1)
- ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
- start_idx = (page-1)*size
- for i in idx:
- ranks["total"] += 1
- if sim[i] < similarity_threshold: break
- start_idx -= 1
- if start_idx >= 0:continue
- if len(ranks["chunks"]) == size:continue
- id = sres.ids[i]
- dnm = sres.field[id]["docnm_kwd"]
- d = {
- "chunk_id": id,
- "content_ltks": sres.field[id]["content_ltks"],
- "doc_id": sres.field[id]["doc_id"],
- "docnm_kwd": dnm,
- "kb_id": sres.field[id]["kb_id"],
- "important_kwd": sres.field[id].get("important_kwd", []),
- "img_id": sres.field[id].get("img_id", ""),
- "similarity": sim[i],
- "vector_similarity": vsim[i],
- "term_similarity": tsim[i]
- }
- ranks["chunks"].append(d)
- if dnm not in ranks["doc_aggs"]:ranks["doc_aggs"][dnm] = 0
- ranks["doc_aggs"][dnm] += 1
-
- return get_json_result(data=ranks)
- except Exception as e:
- if str(e).find("not_found") > 0:
- return get_json_result(data=False, retmsg=f'Index not found!',
- retcode=RetCode.DATA_ERROR)
- return server_error_response(e)
|