Du kannst nicht mehr als 25 Themen auswählen Themen müssen mit entweder einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

conversation_app.py 16KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import json
  17. import re
  18. import traceback
  19. from copy import deepcopy
  20. from api.db.services.conversation_service import ConversationService, structure_answer
  21. from api.db.services.user_service import UserTenantService
  22. from flask import request, Response
  23. from flask_login import login_required, current_user
  24. from api.db import LLMType
  25. from api.db.services.dialog_service import DialogService, chat, ask
  26. from api.db.services.knowledgebase_service import KnowledgebaseService
  27. from api.db.services.llm_service import LLMBundle, TenantService, TenantLLMService
  28. from api import settings
  29. from api.utils.api_utils import get_json_result
  30. from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
  31. from graphrag.mind_map_extractor import MindMapExtractor
  32. @manager.route('/set', methods=['POST']) # noqa: F821
  33. @login_required
  34. def set_conversation():
  35. req = request.json
  36. conv_id = req.get("conversation_id")
  37. is_new = req.get("is_new")
  38. del req["is_new"]
  39. if not is_new:
  40. del req["conversation_id"]
  41. try:
  42. if not ConversationService.update_by_id(conv_id, req):
  43. return get_data_error_result(message="Conversation not found!")
  44. e, conv = ConversationService.get_by_id(conv_id)
  45. if not e:
  46. return get_data_error_result(
  47. message="Fail to update a conversation!")
  48. conv = conv.to_dict()
  49. return get_json_result(data=conv)
  50. except Exception as e:
  51. return server_error_response(e)
  52. try:
  53. e, dia = DialogService.get_by_id(req["dialog_id"])
  54. if not e:
  55. return get_data_error_result(message="Dialog not found")
  56. conv = {
  57. "id": conv_id,
  58. "dialog_id": req["dialog_id"],
  59. "name": req.get("name", "New conversation"),
  60. "message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}]
  61. }
  62. ConversationService.save(**conv)
  63. e, conv = ConversationService.get_by_id(conv["id"])
  64. if not e:
  65. return get_data_error_result(message="Fail to new a conversation!")
  66. conv = conv.to_dict()
  67. return get_json_result(data=conv)
  68. except Exception as e:
  69. return server_error_response(e)
  70. @manager.route('/get', methods=['GET']) # noqa: F821
  71. @login_required
  72. def get():
  73. conv_id = request.args["conversation_id"]
  74. try:
  75. e, conv = ConversationService.get_by_id(conv_id)
  76. if not e:
  77. return get_data_error_result(message="Conversation not found!")
  78. tenants = UserTenantService.query(user_id=current_user.id)
  79. for tenant in tenants:
  80. if DialogService.query(tenant_id=tenant.tenant_id, id=conv.dialog_id):
  81. break
  82. else:
  83. return get_json_result(
  84. data=False, message='Only owner of conversation authorized for this operation.',
  85. code=settings.RetCode.OPERATING_ERROR)
  86. def get_value(d, k1, k2):
  87. return d.get(k1, d.get(k2))
  88. for ref in conv.reference:
  89. ref["chunks"] = [{
  90. "id": get_value(ck, "chunk_id", "id"),
  91. "content": get_value(ck, "content", "content_with_weight"),
  92. "document_id": get_value(ck, "doc_id", "document_id"),
  93. "document_name": get_value(ck, "docnm_kwd", "document_name"),
  94. "dataset_id": get_value(ck, "kb_id", "dataset_id"),
  95. "image_id": get_value(ck, "image_id", "img_id"),
  96. "positions": get_value(ck, "positions", "position_int"),
  97. } for ck in ref.get("chunks", [])]
  98. conv = conv.to_dict()
  99. return get_json_result(data=conv)
  100. except Exception as e:
  101. return server_error_response(e)
  102. @manager.route('/rm', methods=['POST']) # noqa: F821
  103. @login_required
  104. def rm():
  105. conv_ids = request.json["conversation_ids"]
  106. try:
  107. for cid in conv_ids:
  108. exist, conv = ConversationService.get_by_id(cid)
  109. if not exist:
  110. return get_data_error_result(message="Conversation not found!")
  111. tenants = UserTenantService.query(user_id=current_user.id)
  112. for tenant in tenants:
  113. if DialogService.query(tenant_id=tenant.tenant_id, id=conv.dialog_id):
  114. break
  115. else:
  116. return get_json_result(
  117. data=False, message='Only owner of conversation authorized for this operation.',
  118. code=settings.RetCode.OPERATING_ERROR)
  119. ConversationService.delete_by_id(cid)
  120. return get_json_result(data=True)
  121. except Exception as e:
  122. return server_error_response(e)
  123. @manager.route('/list', methods=['GET']) # noqa: F821
  124. @login_required
  125. def list_convsersation():
  126. dialog_id = request.args["dialog_id"]
  127. try:
  128. if not DialogService.query(tenant_id=current_user.id, id=dialog_id):
  129. return get_json_result(
  130. data=False, message='Only owner of dialog authorized for this operation.',
  131. code=settings.RetCode.OPERATING_ERROR)
  132. convs = ConversationService.query(
  133. dialog_id=dialog_id,
  134. order_by=ConversationService.model.create_time,
  135. reverse=True)
  136. convs = [d.to_dict() for d in convs]
  137. return get_json_result(data=convs)
  138. except Exception as e:
  139. return server_error_response(e)
  140. @manager.route('/completion', methods=['POST']) # noqa: F821
  141. @login_required
  142. @validate_request("conversation_id", "messages")
  143. def completion():
  144. req = request.json
  145. msg = []
  146. for m in req["messages"]:
  147. if m["role"] == "system":
  148. continue
  149. if m["role"] == "assistant" and not msg:
  150. continue
  151. msg.append(m)
  152. message_id = msg[-1].get("id")
  153. try:
  154. e, conv = ConversationService.get_by_id(req["conversation_id"])
  155. if not e:
  156. return get_data_error_result(message="Conversation not found!")
  157. conv.message = deepcopy(req["messages"])
  158. e, dia = DialogService.get_by_id(conv.dialog_id)
  159. if not e:
  160. return get_data_error_result(message="Dialog not found!")
  161. del req["conversation_id"]
  162. del req["messages"]
  163. if not conv.reference:
  164. conv.reference = []
  165. else:
  166. def get_value(d, k1, k2):
  167. return d.get(k1, d.get(k2))
  168. for ref in conv.reference:
  169. ref["chunks"] = [{
  170. "id": get_value(ck, "chunk_id", "id"),
  171. "content": get_value(ck, "content", "content_with_weight"),
  172. "document_id": get_value(ck, "doc_id", "document_id"),
  173. "document_name": get_value(ck, "docnm_kwd", "document_name"),
  174. "dataset_id": get_value(ck, "kb_id", "dataset_id"),
  175. "image_id": get_value(ck, "image_id", "img_id"),
  176. "positions": get_value(ck, "positions", "position_int"),
  177. } for ck in ref.get("chunks", [])]
  178. if not conv.reference:
  179. conv.reference = []
  180. conv.reference.append({"chunks": [], "doc_aggs": []})
  181. def stream():
  182. nonlocal dia, msg, req, conv
  183. try:
  184. for ans in chat(dia, msg, True, **req):
  185. ans = structure_answer(conv, ans, message_id, conv.id)
  186. yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
  187. ConversationService.update_by_id(conv.id, conv.to_dict())
  188. except Exception as e:
  189. traceback.print_exc()
  190. yield "data:" + json.dumps({"code": 500, "message": str(e),
  191. "data": {"answer": "**ERROR**: " + str(e), "reference": []}},
  192. ensure_ascii=False) + "\n\n"
  193. yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
  194. if req.get("stream", True):
  195. resp = Response(stream(), mimetype="text/event-stream")
  196. resp.headers.add_header("Cache-control", "no-cache")
  197. resp.headers.add_header("Connection", "keep-alive")
  198. resp.headers.add_header("X-Accel-Buffering", "no")
  199. resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
  200. return resp
  201. else:
  202. answer = None
  203. for ans in chat(dia, msg, **req):
  204. answer = structure_answer(conv, ans, message_id, req["conversation_id"])
  205. ConversationService.update_by_id(conv.id, conv.to_dict())
  206. break
  207. return get_json_result(data=answer)
  208. except Exception as e:
  209. return server_error_response(e)
  210. @manager.route('/tts', methods=['POST']) # noqa: F821
  211. @login_required
  212. def tts():
  213. req = request.json
  214. text = req["text"]
  215. tenants = TenantService.get_info_by(current_user.id)
  216. if not tenants:
  217. return get_data_error_result(message="Tenant not found!")
  218. tts_id = tenants[0]["tts_id"]
  219. if not tts_id:
  220. return get_data_error_result(message="No default TTS model is set")
  221. tts_mdl = LLMBundle(tenants[0]["tenant_id"], LLMType.TTS, tts_id)
  222. def stream_audio():
  223. try:
  224. for txt in re.split(r"[,。/《》?;:!\n\r:;]+", text):
  225. for chunk in tts_mdl.tts(txt):
  226. yield chunk
  227. except Exception as e:
  228. yield ("data:" + json.dumps({"code": 500, "message": str(e),
  229. "data": {"answer": "**ERROR**: " + str(e)}},
  230. ensure_ascii=False)).encode('utf-8')
  231. resp = Response(stream_audio(), mimetype="audio/mpeg")
  232. resp.headers.add_header("Cache-Control", "no-cache")
  233. resp.headers.add_header("Connection", "keep-alive")
  234. resp.headers.add_header("X-Accel-Buffering", "no")
  235. return resp
  236. @manager.route('/delete_msg', methods=['POST']) # noqa: F821
  237. @login_required
  238. @validate_request("conversation_id", "message_id")
  239. def delete_msg():
  240. req = request.json
  241. e, conv = ConversationService.get_by_id(req["conversation_id"])
  242. if not e:
  243. return get_data_error_result(message="Conversation not found!")
  244. conv = conv.to_dict()
  245. for i, msg in enumerate(conv["message"]):
  246. if req["message_id"] != msg.get("id", ""):
  247. continue
  248. assert conv["message"][i + 1]["id"] == req["message_id"]
  249. conv["message"].pop(i)
  250. conv["message"].pop(i)
  251. conv["reference"].pop(max(0, i // 2 - 1))
  252. break
  253. ConversationService.update_by_id(conv["id"], conv)
  254. return get_json_result(data=conv)
  255. @manager.route('/thumbup', methods=['POST']) # noqa: F821
  256. @login_required
  257. @validate_request("conversation_id", "message_id")
  258. def thumbup():
  259. req = request.json
  260. e, conv = ConversationService.get_by_id(req["conversation_id"])
  261. if not e:
  262. return get_data_error_result(message="Conversation not found!")
  263. up_down = req.get("set")
  264. feedback = req.get("feedback", "")
  265. conv = conv.to_dict()
  266. for i, msg in enumerate(conv["message"]):
  267. if req["message_id"] == msg.get("id", "") and msg.get("role", "") == "assistant":
  268. if up_down:
  269. msg["thumbup"] = True
  270. if "feedback" in msg:
  271. del msg["feedback"]
  272. else:
  273. msg["thumbup"] = False
  274. if feedback:
  275. msg["feedback"] = feedback
  276. break
  277. ConversationService.update_by_id(conv["id"], conv)
  278. return get_json_result(data=conv)
  279. @manager.route('/ask', methods=['POST']) # noqa: F821
  280. @login_required
  281. @validate_request("question", "kb_ids")
  282. def ask_about():
  283. req = request.json
  284. uid = current_user.id
  285. def stream():
  286. nonlocal req, uid
  287. try:
  288. for ans in ask(req["question"], req["kb_ids"], uid):
  289. yield "data:" + json.dumps({"code": 0, "message": "", "data": ans}, ensure_ascii=False) + "\n\n"
  290. except Exception as e:
  291. yield "data:" + json.dumps({"code": 500, "message": str(e),
  292. "data": {"answer": "**ERROR**: " + str(e), "reference": []}},
  293. ensure_ascii=False) + "\n\n"
  294. yield "data:" + json.dumps({"code": 0, "message": "", "data": True}, ensure_ascii=False) + "\n\n"
  295. resp = Response(stream(), mimetype="text/event-stream")
  296. resp.headers.add_header("Cache-control", "no-cache")
  297. resp.headers.add_header("Connection", "keep-alive")
  298. resp.headers.add_header("X-Accel-Buffering", "no")
  299. resp.headers.add_header("Content-Type", "text/event-stream; charset=utf-8")
  300. return resp
  301. @manager.route('/mindmap', methods=['POST']) # noqa: F821
  302. @login_required
  303. @validate_request("question", "kb_ids")
  304. def mindmap():
  305. req = request.json
  306. kb_ids = req["kb_ids"]
  307. e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
  308. if not e:
  309. return get_data_error_result(message="Knowledgebase not found!")
  310. embd_mdl = TenantLLMService.model_instance(
  311. kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
  312. chat_mdl = LLMBundle(current_user.id, LLMType.CHAT)
  313. ranks = settings.retrievaler.retrieval(req["question"], embd_mdl, kb.tenant_id, kb_ids, 1, 12,
  314. 0.3, 0.3, aggs=False)
  315. mindmap = MindMapExtractor(chat_mdl)
  316. mind_map = mindmap([c["content_with_weight"] for c in ranks["chunks"]]).output
  317. if "error" in mind_map:
  318. return server_error_response(Exception(mind_map["error"]))
  319. return get_json_result(data=mind_map)
  320. @manager.route('/related_questions', methods=['POST']) # noqa: F821
  321. @login_required
  322. @validate_request("question")
  323. def related_questions():
  324. req = request.json
  325. question = req["question"]
  326. chat_mdl = LLMBundle(current_user.id, LLMType.CHAT)
  327. prompt = """
  328. Objective: To generate search terms related to the user's search keywords, helping users find more valuable information.
  329. Instructions:
  330. - Based on the keywords provided by the user, generate 5-10 related search terms.
  331. - Each search term should be directly or indirectly related to the keyword, guiding the user to find more valuable information.
  332. - Use common, general terms as much as possible, avoiding obscure words or technical jargon.
  333. - Keep the term length between 2-4 words, concise and clear.
  334. - DO NOT translate, use the language of the original keywords.
  335. ### Example:
  336. Keywords: Chinese football
  337. Related search terms:
  338. 1. Current status of Chinese football
  339. 2. Reform of Chinese football
  340. 3. Youth training of Chinese football
  341. 4. Chinese football in the Asian Cup
  342. 5. Chinese football in the World Cup
  343. Reason:
  344. - When searching, users often only use one or two keywords, making it difficult to fully express their information needs.
  345. - Generating related search terms can help users dig deeper into relevant information and improve search efficiency.
  346. - At the same time, related terms can also help search engines better understand user needs and return more accurate search results.
  347. """
  348. ans = chat_mdl.chat(prompt, [{"role": "user", "content": f"""
  349. Keywords: {question}
  350. Related search terms:
  351. """}], {"temperature": 0.9})
  352. return get_json_result(data=[re.sub(r"^[0-9]\. ", "", a) for a in ans.split("\n") if re.match(r"^[0-9]\. ", a)])