| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152 | 
							- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import logging
 - import os
 - from concurrent.futures import ThreadPoolExecutor
 - import json
 - from functools import reduce
 - import networkx as nx
 - from api.db import LLMType
 - from api.db.services.llm_service import LLMBundle
 - from api.db.services.user_service import TenantService
 - from graphrag.community_reports_extractor import CommunityReportsExtractor
 - from graphrag.entity_resolution import EntityResolution
 - from graphrag.graph_extractor import GraphExtractor, DEFAULT_ENTITY_TYPES
 - from graphrag.mind_map_extractor import MindMapExtractor
 - from rag.nlp import rag_tokenizer
 - from rag.utils import num_tokens_from_string
 - 
 - 
 - def graph_merge(g1, g2):
 -     g = g2.copy()
 -     for n, attr in g1.nodes(data=True):
 -         if n not in g2.nodes():
 -             g.add_node(n, **attr)
 -             continue
 - 
 -         g.nodes[n]["weight"] += 1
 -         if g.nodes[n]["description"].lower().find(attr["description"][:32].lower()) < 0:
 -             g.nodes[n]["description"] += "\n" + attr["description"]
 - 
 -     for source, target, attr in g1.edges(data=True):
 -         if g.has_edge(source, target):
 -             g[source][target].update({"weight": attr["weight"]+1})
 -             continue
 -         g.add_edge(source, target, **attr)
 - 
 -     for node_degree in g.degree:
 -         g.nodes[str(node_degree[0])]["rank"] = int(node_degree[1])
 -     return g
 - 
 - 
 - def build_knowledge_graph_chunks(tenant_id: str, chunks: list[str], callback, entity_types=DEFAULT_ENTITY_TYPES):
 -     _, tenant = TenantService.get_by_id(tenant_id)
 -     llm_bdl = LLMBundle(tenant_id, LLMType.CHAT, tenant.llm_id)
 -     ext = GraphExtractor(llm_bdl)
 -     left_token_count = llm_bdl.max_length - ext.prompt_token_count - 1024
 -     left_token_count = max(llm_bdl.max_length * 0.6, left_token_count)
 - 
 -     assert left_token_count > 0, f"The LLM context length({llm_bdl.max_length}) is smaller than prompt({ext.prompt_token_count})"
 - 
 -     BATCH_SIZE=4
 -     texts, graphs = [], []
 -     cnt = 0
 -     max_workers = int(os.environ.get('GRAPH_EXTRACTOR_MAX_WORKERS', 50))
 -     with ThreadPoolExecutor(max_workers=max_workers) as exe:
 -         threads = []
 -         for i in range(len(chunks)):
 -             tkn_cnt = num_tokens_from_string(chunks[i])
 -             if cnt+tkn_cnt >= left_token_count and texts:
 -                 for b in range(0, len(texts), BATCH_SIZE):
 -                     threads.append(exe.submit(ext, ["\n".join(texts[b:b+BATCH_SIZE])], {"entity_types": entity_types}, callback))
 -                 texts = []
 -                 cnt = 0
 -             texts.append(chunks[i])
 -             cnt += tkn_cnt
 -         if texts:
 -             for b in range(0, len(texts), BATCH_SIZE):
 -                 threads.append(exe.submit(ext, ["\n".join(texts[b:b+BATCH_SIZE])], {"entity_types": entity_types}, callback))
 - 
 -         callback(0.5, "Extracting entities.")
 -         graphs = []
 -         for i, _ in enumerate(threads):
 -             graphs.append(_.result().output)
 -             callback(0.5 + 0.1*i/len(threads), f"Entities extraction progress ... {i+1}/{len(threads)}")
 - 
 -     graph = reduce(graph_merge, graphs) if graphs else nx.Graph()
 -     er = EntityResolution(llm_bdl)
 -     graph = er(graph).output
 - 
 -     _chunks = chunks
 -     chunks = []
 -     for n, attr in graph.nodes(data=True):
 -         if attr.get("rank", 0) == 0:
 -             logging.debug(f"Ignore entity: {n}")
 -             continue
 -         chunk = {
 -             "name_kwd": n,
 -             "important_kwd": [n],
 -             "title_tks": rag_tokenizer.tokenize(n),
 -             "content_with_weight": json.dumps({"name": n, **attr}, ensure_ascii=False),
 -             "content_ltks": rag_tokenizer.tokenize(attr["description"]),
 -             "knowledge_graph_kwd": "entity",
 -             "rank_int": attr["rank"],
 -             "weight_int": attr["weight"]
 -         }
 -         chunk["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(chunk["content_ltks"])
 -         chunks.append(chunk)
 - 
 -     callback(0.6, "Extracting community reports.")
 -     cr = CommunityReportsExtractor(llm_bdl)
 -     cr = cr(graph, callback=callback)
 -     for community, desc in zip(cr.structured_output, cr.output):
 -         chunk = {
 -             "title_tks": rag_tokenizer.tokenize(community["title"]),
 -             "content_with_weight": desc,
 -             "content_ltks": rag_tokenizer.tokenize(desc),
 -             "knowledge_graph_kwd": "community_report",
 -             "weight_flt": community["weight"],
 -             "entities_kwd": community["entities"],
 -             "important_kwd": community["entities"]
 -         }
 -         chunk["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(chunk["content_ltks"])
 -         chunks.append(chunk)
 - 
 -     chunks.append(
 -         {
 -             "content_with_weight": json.dumps(nx.node_link_data(graph), ensure_ascii=False, indent=2),
 -             "knowledge_graph_kwd": "graph"
 -         })
 - 
 -     callback(0.75, "Extracting mind graph.")
 -     mindmap = MindMapExtractor(llm_bdl)
 -     mg = mindmap(_chunks).output
 -     if not len(mg.keys()): return chunks
 - 
 -     logging.debug(json.dumps(mg, ensure_ascii=False, indent=2))
 -     chunks.append(
 -         {
 -             "content_with_weight": json.dumps(mg, ensure_ascii=False, indent=2),
 -             "knowledge_graph_kwd": "mind_map"
 -         })
 - 
 -     return chunks
 - 
 - 
 - 
 - 
 - 
 
 
  |