| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268 | 
							- # Copyright (c) 2024 Microsoft Corporation.
 - # Licensed under the MIT License
 - """
 - Reference:
 -  - [graphrag](https://github.com/microsoft/graphrag)
 - """
 - 
 - import logging
 - import argparse
 - import json
 - import re
 - import traceback
 - from dataclasses import dataclass
 - from typing import Any
 - 
 - import tiktoken
 - 
 - from graphrag.claim_prompt import CLAIM_EXTRACTION_PROMPT, CONTINUE_PROMPT, LOOP_PROMPT
 - from rag.llm.chat_model import Base as CompletionLLM
 - from graphrag.utils import ErrorHandlerFn, perform_variable_replacements
 - 
 - DEFAULT_TUPLE_DELIMITER = "<|>"
 - DEFAULT_RECORD_DELIMITER = "##"
 - DEFAULT_COMPLETION_DELIMITER = "<|COMPLETE|>"
 - CLAIM_MAX_GLEANINGS = 1
 - 
 - 
 - @dataclass
 - class ClaimExtractorResult:
 -     """Claim extractor result class definition."""
 - 
 -     output: list[dict]
 -     source_docs: dict[str, Any]
 - 
 - 
 - class ClaimExtractor:
 -     """Claim extractor class definition."""
 - 
 -     _llm: CompletionLLM
 -     _extraction_prompt: str
 -     _summary_prompt: str
 -     _output_formatter_prompt: str
 -     _input_text_key: str
 -     _input_entity_spec_key: str
 -     _input_claim_description_key: str
 -     _tuple_delimiter_key: str
 -     _record_delimiter_key: str
 -     _completion_delimiter_key: str
 -     _max_gleanings: int
 -     _on_error: ErrorHandlerFn
 - 
 -     def __init__(
 -         self,
 -         llm_invoker: CompletionLLM,
 -         extraction_prompt: str | None = None,
 -         input_text_key: str | None = None,
 -         input_entity_spec_key: str | None = None,
 -         input_claim_description_key: str | None = None,
 -         input_resolved_entities_key: str | None = None,
 -         tuple_delimiter_key: str | None = None,
 -         record_delimiter_key: str | None = None,
 -         completion_delimiter_key: str | None = None,
 -         encoding_model: str | None = None,
 -         max_gleanings: int | None = None,
 -         on_error: ErrorHandlerFn | None = None,
 -     ):
 -         """Init method definition."""
 -         self._llm = llm_invoker
 -         self._extraction_prompt = extraction_prompt or CLAIM_EXTRACTION_PROMPT
 -         self._input_text_key = input_text_key or "input_text"
 -         self._input_entity_spec_key = input_entity_spec_key or "entity_specs"
 -         self._tuple_delimiter_key = tuple_delimiter_key or "tuple_delimiter"
 -         self._record_delimiter_key = record_delimiter_key or "record_delimiter"
 -         self._completion_delimiter_key = (
 -             completion_delimiter_key or "completion_delimiter"
 -         )
 -         self._input_claim_description_key = (
 -             input_claim_description_key or "claim_description"
 -         )
 -         self._input_resolved_entities_key = (
 -             input_resolved_entities_key or "resolved_entities"
 -         )
 -         self._max_gleanings = (
 -             max_gleanings if max_gleanings is not None else CLAIM_MAX_GLEANINGS
 -         )
 -         self._on_error = on_error or (lambda _e, _s, _d: None)
 - 
 -         # Construct the looping arguments
 -         encoding = tiktoken.get_encoding(encoding_model or "cl100k_base")
 -         yes = encoding.encode("YES")
 -         no = encoding.encode("NO")
 -         self._loop_args = {"logit_bias": {yes[0]: 100, no[0]: 100}, "max_tokens": 1}
 - 
 -     def __call__(
 -         self, inputs: dict[str, Any], prompt_variables: dict | None = None
 -     ) -> ClaimExtractorResult:
 -         """Call method definition."""
 -         if prompt_variables is None:
 -             prompt_variables = {}
 -         texts = inputs[self._input_text_key]
 -         entity_spec = str(inputs[self._input_entity_spec_key])
 -         claim_description = inputs[self._input_claim_description_key]
 -         resolved_entities = inputs.get(self._input_resolved_entities_key, {})
 -         source_doc_map = {}
 - 
 -         prompt_args = {
 -             self._input_entity_spec_key: entity_spec,
 -             self._input_claim_description_key: claim_description,
 -             self._tuple_delimiter_key: prompt_variables.get(self._tuple_delimiter_key)
 -             or DEFAULT_TUPLE_DELIMITER,
 -             self._record_delimiter_key: prompt_variables.get(self._record_delimiter_key)
 -             or DEFAULT_RECORD_DELIMITER,
 -             self._completion_delimiter_key: prompt_variables.get(
 -                 self._completion_delimiter_key
 -             )
 -             or DEFAULT_COMPLETION_DELIMITER,
 -         }
 - 
 -         all_claims: list[dict] = []
 -         for doc_index, text in enumerate(texts):
 -             document_id = f"d{doc_index}"
 -             try:
 -                 claims = self._process_document(prompt_args, text, doc_index)
 -                 all_claims += [
 -                     self._clean_claim(c, document_id, resolved_entities) for c in claims
 -                 ]
 -                 source_doc_map[document_id] = text
 -             except Exception as e:
 -                 logging.exception("error extracting claim")
 -                 self._on_error(
 -                     e,
 -                     traceback.format_exc(),
 -                     {"doc_index": doc_index, "text": text},
 -                 )
 -                 continue
 - 
 -         return ClaimExtractorResult(
 -             output=all_claims,
 -             source_docs=source_doc_map,
 -         )
 - 
 -     def _clean_claim(
 -         self, claim: dict, document_id: str, resolved_entities: dict
 -     ) -> dict:
 -         # clean the parsed claims to remove any claims with status = False
 -         obj = claim.get("object_id", claim.get("object"))
 -         subject = claim.get("subject_id", claim.get("subject"))
 - 
 -         # If subject or object in resolved entities, then replace with resolved entity
 -         obj = resolved_entities.get(obj, obj)
 -         subject = resolved_entities.get(subject, subject)
 -         claim["object_id"] = obj
 -         claim["subject_id"] = subject
 -         claim["doc_id"] = document_id
 -         return claim
 - 
 -     def _process_document(
 -         self, prompt_args: dict, doc, doc_index: int
 -     ) -> list[dict]:
 -         record_delimiter = prompt_args.get(
 -             self._record_delimiter_key, DEFAULT_RECORD_DELIMITER
 -         )
 -         completion_delimiter = prompt_args.get(
 -             self._completion_delimiter_key, DEFAULT_COMPLETION_DELIMITER
 -         )
 -         variables = {
 -                         self._input_text_key: doc,
 -                         **prompt_args,
 -                     }
 -         text = perform_variable_replacements(self._extraction_prompt, variables=variables)
 -         gen_conf = {"temperature": 0.5}
 -         results = self._llm.chat(text, [{"role": "user", "content": "Output:"}], gen_conf)
 -         claims = results.strip().removesuffix(completion_delimiter)
 -         history = [{"role": "system", "content": text}, {"role": "assistant", "content": results}]
 - 
 -         # Repeat to ensure we maximize entity count
 -         for i in range(self._max_gleanings):
 -             text = perform_variable_replacements(CONTINUE_PROMPT, history=history, variables=variables)
 -             history.append({"role": "user", "content": text})
 -             extension = self._llm.chat("", history, gen_conf)
 -             claims += record_delimiter + extension.strip().removesuffix(
 -                 completion_delimiter
 -             )
 - 
 -             # If this isn't the last loop, check to see if we should continue
 -             if i >= self._max_gleanings - 1:
 -                 break
 - 
 -             history.append({"role": "assistant", "content": extension})
 -             history.append({"role": "user", "content": LOOP_PROMPT})
 -             continuation = self._llm.chat("", history, self._loop_args)
 -             if continuation != "YES":
 -                 break
 - 
 -         result = self._parse_claim_tuples(claims, prompt_args)
 -         for r in result:
 -             r["doc_id"] = f"{doc_index}"
 -         return result
 - 
 -     def _parse_claim_tuples(
 -         self, claims: str, prompt_variables: dict
 -     ) -> list[dict[str, Any]]:
 -         """Parse claim tuples."""
 -         record_delimiter = prompt_variables.get(
 -             self._record_delimiter_key, DEFAULT_RECORD_DELIMITER
 -         )
 -         completion_delimiter = prompt_variables.get(
 -             self._completion_delimiter_key, DEFAULT_COMPLETION_DELIMITER
 -         )
 -         tuple_delimiter = prompt_variables.get(
 -             self._tuple_delimiter_key, DEFAULT_TUPLE_DELIMITER
 -         )
 - 
 -         def pull_field(index: int, fields: list[str]) -> str | None:
 -             return fields[index].strip() if len(fields) > index else None
 - 
 -         result: list[dict[str, Any]] = []
 -         claims_values = (
 -             claims.strip().removesuffix(completion_delimiter).split(record_delimiter)
 -         )
 -         for claim in claims_values:
 -             claim = claim.strip().removeprefix("(").removesuffix(")")
 -             claim = re.sub(r".*Output:", "", claim)
 - 
 -             # Ignore the completion delimiter
 -             if claim == completion_delimiter:
 -                 continue
 - 
 -             claim_fields = claim.split(tuple_delimiter)
 -             o = {
 -                 "subject_id": pull_field(0, claim_fields),
 -                 "object_id": pull_field(1, claim_fields),
 -                 "type": pull_field(2, claim_fields),
 -                 "status": pull_field(3, claim_fields),
 -                 "start_date": pull_field(4, claim_fields),
 -                 "end_date": pull_field(5, claim_fields),
 -                 "description": pull_field(6, claim_fields),
 -                 "source_text": pull_field(7, claim_fields),
 -                 "doc_id": pull_field(8, claim_fields),
 -             }
 -             if any([not o["subject_id"], not o["object_id"], o["subject_id"].lower() == "none", o["object_id"] == "none"]):
 -                 continue
 -             result.append(o)
 -         return result
 - 
 - 
 - if __name__ == "__main__":
 -     parser = argparse.ArgumentParser()
 -     parser.add_argument('-t', '--tenant_id', default=False, help="Tenant ID", action='store', required=True)
 -     parser.add_argument('-d', '--doc_id', default=False, help="Document ID", action='store', required=True)
 -     args = parser.parse_args()
 - 
 -     from api.db import LLMType
 -     from api.db.services.llm_service import LLMBundle
 -     from api import settings
 -     from api.db.services.knowledgebase_service import KnowledgebaseService
 - 
 -     kb_ids = KnowledgebaseService.get_kb_ids(args.tenant_id)
 - 
 -     ex = ClaimExtractor(LLMBundle(args.tenant_id, LLMType.CHAT))
 -     docs = [d["content_with_weight"] for d in settings.retrievaler.chunk_list(args.doc_id, args.tenant_id, kb_ids, max_count=12, fields=["content_with_weight"])]
 -     info = {
 -         "input_text": docs,
 -         "entity_specs": "organization, person",
 -         "claim_description": ""
 -     }
 -     claim = ex(info)
 -     logging.info(json.dumps(claim.output, ensure_ascii=False, indent=2))
 
 
  |