Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

llm_app.py 13KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import json
  17. from flask import request
  18. from flask_login import login_required, current_user
  19. from api.db.services.llm_service import LLMFactoriesService, TenantLLMService, LLMService
  20. from api.settings import LIGHTEN
  21. from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
  22. from api.db import StatusEnum, LLMType
  23. from api.db.db_models import TenantLLM
  24. from api.utils.api_utils import get_json_result
  25. from rag.llm import EmbeddingModel, ChatModel, RerankModel, CvModel, TTSModel
  26. import requests
  27. @manager.route('/factories', methods=['GET'])
  28. @login_required
  29. def factories():
  30. try:
  31. fac = LLMFactoriesService.get_all()
  32. fac = [f.to_dict() for f in fac if f.name not in ["Youdao", "FastEmbed", "BAAI"]]
  33. llms = LLMService.get_all()
  34. mdl_types = {}
  35. for m in llms:
  36. if m.status != StatusEnum.VALID.value:
  37. continue
  38. if m.fid not in mdl_types:
  39. mdl_types[m.fid] = set([])
  40. mdl_types[m.fid].add(m.model_type)
  41. for f in fac:
  42. f["model_types"] = list(mdl_types.get(f["name"], [LLMType.CHAT, LLMType.EMBEDDING, LLMType.RERANK,
  43. LLMType.IMAGE2TEXT, LLMType.SPEECH2TEXT, LLMType.TTS]))
  44. return get_json_result(data=fac)
  45. except Exception as e:
  46. return server_error_response(e)
  47. @manager.route('/set_api_key', methods=['POST'])
  48. @login_required
  49. @validate_request("llm_factory", "api_key")
  50. def set_api_key():
  51. req = request.json
  52. # test if api key works
  53. chat_passed, embd_passed, rerank_passed = False, False, False
  54. factory = req["llm_factory"]
  55. msg = ""
  56. for llm in LLMService.query(fid=factory)[:3]:
  57. if not embd_passed and llm.model_type == LLMType.EMBEDDING.value:
  58. mdl = EmbeddingModel[factory](
  59. req["api_key"], llm.llm_name, base_url=req.get("base_url"))
  60. try:
  61. arr, tc = mdl.encode(["Test if the api key is available"])
  62. if len(arr[0]) == 0:
  63. raise Exception("Fail")
  64. embd_passed = True
  65. except Exception as e:
  66. msg += f"\nFail to access embedding model({llm.llm_name}) using this api key." + str(e)
  67. elif not chat_passed and llm.model_type == LLMType.CHAT.value:
  68. mdl = ChatModel[factory](
  69. req["api_key"], llm.llm_name, base_url=req.get("base_url"))
  70. try:
  71. m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}],
  72. {"temperature": 0.9,'max_tokens':50})
  73. if m.find("**ERROR**") >=0:
  74. raise Exception(m)
  75. except Exception as e:
  76. msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(
  77. e)
  78. chat_passed = True
  79. elif not rerank_passed and llm.model_type == LLMType.RERANK:
  80. mdl = RerankModel[factory](
  81. req["api_key"], llm.llm_name, base_url=req.get("base_url"))
  82. try:
  83. arr, tc = mdl.similarity("What's the weather?", ["Is it sunny today?"])
  84. if len(arr) == 0 or tc == 0:
  85. raise Exception("Fail")
  86. except Exception as e:
  87. msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(
  88. e)
  89. rerank_passed = True
  90. if msg:
  91. return get_data_error_result(retmsg=msg)
  92. llm_config = {
  93. "api_key": req["api_key"],
  94. "api_base": req.get("base_url", "")
  95. }
  96. for n in ["model_type", "llm_name"]:
  97. if n in req:
  98. llm_config[n] = req[n]
  99. for llm in LLMService.query(fid=factory):
  100. if not TenantLLMService.filter_update(
  101. [TenantLLM.tenant_id == current_user.id,
  102. TenantLLM.llm_factory == factory,
  103. TenantLLM.llm_name == llm.llm_name],
  104. llm_config):
  105. TenantLLMService.save(
  106. tenant_id=current_user.id,
  107. llm_factory=factory,
  108. llm_name=llm.llm_name,
  109. model_type=llm.model_type,
  110. api_key=llm_config["api_key"],
  111. api_base=llm_config["api_base"]
  112. )
  113. return get_json_result(data=True)
  114. @manager.route('/add_llm', methods=['POST'])
  115. @login_required
  116. @validate_request("llm_factory")
  117. def add_llm():
  118. req = request.json
  119. factory = req["llm_factory"]
  120. def apikey_json(keys):
  121. nonlocal req
  122. return json.dumps({k: req.get(k, "") for k in keys})
  123. if factory == "VolcEngine":
  124. # For VolcEngine, due to its special authentication method
  125. # Assemble ark_api_key endpoint_id into api_key
  126. llm_name = req["llm_name"]
  127. api_key = apikey_json(["ark_api_key", "endpoint_id"])
  128. elif factory == "Tencent Hunyuan":
  129. req["api_key"] = apikey_json(["hunyuan_sid", "hunyuan_sk"])
  130. return set_api_key()
  131. elif factory == "Tencent Cloud":
  132. req["api_key"] = apikey_json(["tencent_cloud_sid", "tencent_cloud_sk"])
  133. elif factory == "Bedrock":
  134. # For Bedrock, due to its special authentication method
  135. # Assemble bedrock_ak, bedrock_sk, bedrock_region
  136. llm_name = req["llm_name"]
  137. api_key = apikey_json(["bedrock_ak", "bedrock_sk", "bedrock_region"])
  138. elif factory == "LocalAI":
  139. llm_name = req["llm_name"]+"___LocalAI"
  140. api_key = "xxxxxxxxxxxxxxx"
  141. elif factory == "HuggingFace":
  142. llm_name = req["llm_name"]+"___HuggingFace"
  143. api_key = "xxxxxxxxxxxxxxx"
  144. elif factory == "OpenAI-API-Compatible":
  145. llm_name = req["llm_name"]+"___OpenAI-API"
  146. api_key = req.get("api_key","xxxxxxxxxxxxxxx")
  147. elif factory =="XunFei Spark":
  148. llm_name = req["llm_name"]
  149. if req["model_type"] == "chat":
  150. api_key = req.get("spark_api_password", "xxxxxxxxxxxxxxx")
  151. elif req["model_type"] == "tts":
  152. api_key = apikey_json(["spark_app_id", "spark_api_secret","spark_api_key"])
  153. elif factory == "BaiduYiyan":
  154. llm_name = req["llm_name"]
  155. api_key = apikey_json(["yiyan_ak", "yiyan_sk"])
  156. elif factory == "Fish Audio":
  157. llm_name = req["llm_name"]
  158. api_key = apikey_json(["fish_audio_ak", "fish_audio_refid"])
  159. elif factory == "Google Cloud":
  160. llm_name = req["llm_name"]
  161. api_key = apikey_json(["google_project_id", "google_region", "google_service_account_key"])
  162. else:
  163. llm_name = req["llm_name"]
  164. api_key = req.get("api_key", "xxxxxxxxxxxxxxx")
  165. llm = {
  166. "tenant_id": current_user.id,
  167. "llm_factory": factory,
  168. "model_type": req["model_type"],
  169. "llm_name": llm_name,
  170. "api_base": req.get("api_base", ""),
  171. "api_key": api_key
  172. }
  173. msg = ""
  174. if llm["model_type"] == LLMType.EMBEDDING.value:
  175. mdl = EmbeddingModel[factory](
  176. key=llm['api_key'],
  177. model_name=llm["llm_name"],
  178. base_url=llm["api_base"])
  179. try:
  180. arr, tc = mdl.encode(["Test if the api key is available"])
  181. if len(arr[0]) == 0 or tc == 0:
  182. raise Exception("Fail")
  183. except Exception as e:
  184. msg += f"\nFail to access embedding model({llm['llm_name']})." + str(e)
  185. elif llm["model_type"] == LLMType.CHAT.value:
  186. mdl = ChatModel[factory](
  187. key=llm['api_key'],
  188. model_name=llm["llm_name"],
  189. base_url=llm["api_base"]
  190. )
  191. try:
  192. m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {
  193. "temperature": 0.9})
  194. if not tc:
  195. raise Exception(m)
  196. except Exception as e:
  197. msg += f"\nFail to access model({llm['llm_name']})." + str(
  198. e)
  199. elif llm["model_type"] == LLMType.RERANK:
  200. mdl = RerankModel[factory](
  201. key=llm["api_key"],
  202. model_name=llm["llm_name"],
  203. base_url=llm["api_base"]
  204. )
  205. try:
  206. arr, tc = mdl.similarity("Hello~ Ragflower!", ["Hi, there!"])
  207. if len(arr) == 0 or tc == 0:
  208. raise Exception("Not known.")
  209. except Exception as e:
  210. msg += f"\nFail to access model({llm['llm_name']})." + str(
  211. e)
  212. elif llm["model_type"] == LLMType.IMAGE2TEXT.value:
  213. mdl = CvModel[factory](
  214. key=llm["api_key"],
  215. model_name=llm["llm_name"],
  216. base_url=llm["api_base"]
  217. )
  218. try:
  219. img_url = (
  220. "https://upload.wikimedia.org/wikipedia/comm"
  221. "ons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/256"
  222. "0px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
  223. )
  224. res = requests.get(img_url)
  225. if res.status_code == 200:
  226. m, tc = mdl.describe(res.content)
  227. if not tc:
  228. raise Exception(m)
  229. else:
  230. pass
  231. except Exception as e:
  232. msg += f"\nFail to access model({llm['llm_name']})." + str(e)
  233. elif llm["model_type"] == LLMType.TTS:
  234. mdl = TTSModel[factory](
  235. key=llm["api_key"], model_name=llm["llm_name"], base_url=llm["api_base"]
  236. )
  237. try:
  238. for resp in mdl.tts("Hello~ Ragflower!"):
  239. pass
  240. except RuntimeError as e:
  241. msg += f"\nFail to access model({llm['llm_name']})." + str(e)
  242. else:
  243. # TODO: check other type of models
  244. pass
  245. if msg:
  246. return get_data_error_result(retmsg=msg)
  247. if not TenantLLMService.filter_update(
  248. [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == factory, TenantLLM.llm_name == llm["llm_name"]], llm):
  249. TenantLLMService.save(**llm)
  250. return get_json_result(data=True)
  251. @manager.route('/delete_llm', methods=['POST'])
  252. @login_required
  253. @validate_request("llm_factory", "llm_name")
  254. def delete_llm():
  255. req = request.json
  256. TenantLLMService.filter_delete(
  257. [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"], TenantLLM.llm_name == req["llm_name"]])
  258. return get_json_result(data=True)
  259. @manager.route('/delete_factory', methods=['POST'])
  260. @login_required
  261. @validate_request("llm_factory")
  262. def delete_factory():
  263. req = request.json
  264. TenantLLMService.filter_delete(
  265. [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"]])
  266. return get_json_result(data=True)
  267. @manager.route('/my_llms', methods=['GET'])
  268. @login_required
  269. def my_llms():
  270. try:
  271. res = {}
  272. for o in TenantLLMService.get_my_llms(current_user.id):
  273. if o["llm_factory"] not in res:
  274. res[o["llm_factory"]] = {
  275. "tags": o["tags"],
  276. "llm": []
  277. }
  278. res[o["llm_factory"]]["llm"].append({
  279. "type": o["model_type"],
  280. "name": o["llm_name"],
  281. "used_token": o["used_tokens"]
  282. })
  283. return get_json_result(data=res)
  284. except Exception as e:
  285. return server_error_response(e)
  286. @manager.route('/list', methods=['GET'])
  287. @login_required
  288. def list_app():
  289. self_deploied = ["Youdao","FastEmbed", "BAAI", "Ollama", "Xinference", "LocalAI", "LM-Studio"]
  290. weighted = ["Youdao","FastEmbed", "BAAI"] if LIGHTEN else []
  291. model_type = request.args.get("model_type")
  292. try:
  293. objs = TenantLLMService.query(tenant_id=current_user.id)
  294. facts = set([o.to_dict()["llm_factory"] for o in objs if o.api_key])
  295. llms = LLMService.get_all()
  296. llms = [m.to_dict()
  297. for m in llms if m.status == StatusEnum.VALID.value and m.fid not in weighted]
  298. for m in llms:
  299. m["available"] = m["fid"] in facts or m["llm_name"].lower() == "flag-embedding" or m["fid"] in self_deploied
  300. llm_set = set([m["llm_name"] for m in llms])
  301. for o in objs:
  302. if not o.api_key:continue
  303. if o.llm_name in llm_set:continue
  304. llms.append({"llm_name": o.llm_name, "model_type": o.model_type, "fid": o.llm_factory, "available": True})
  305. res = {}
  306. for m in llms:
  307. if model_type and m["model_type"].find(model_type)<0:
  308. continue
  309. if m["fid"] not in res:
  310. res[m["fid"]] = []
  311. res[m["fid"]].append(m)
  312. return get_json_result(data=res)
  313. except Exception as e:
  314. return server_error_response(e)