Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import datetime
  17. import json
  18. import logging
  19. import os
  20. import hashlib
  21. import copy
  22. import re
  23. import sys
  24. import time
  25. import traceback
  26. from functools import partial
  27. from rag.settings import database_logger
  28. from rag.settings import cron_logger, DOC_MAXIMUM_SIZE
  29. from multiprocessing import Pool
  30. import numpy as np
  31. from elasticsearch_dsl import Q
  32. from multiprocessing.context import TimeoutError
  33. from api.db.services.task_service import TaskService
  34. from rag.utils import ELASTICSEARCH
  35. from rag.utils import MINIO
  36. from rag.utils import rmSpace, findMaxTm
  37. from rag.nlp import search
  38. from io import BytesIO
  39. import pandas as pd
  40. from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture, naive, one
  41. from api.db import LLMType, ParserType
  42. from api.db.services.document_service import DocumentService
  43. from api.db.services.llm_service import LLMBundle
  44. from api.utils.file_utils import get_project_base_directory
  45. BATCH_SIZE = 64
  46. FACTORY = {
  47. "general": naive,
  48. ParserType.NAIVE.value: naive,
  49. ParserType.PAPER.value: paper,
  50. ParserType.BOOK.value: book,
  51. ParserType.PRESENTATION.value: presentation,
  52. ParserType.MANUAL.value: manual,
  53. ParserType.LAWS.value: laws,
  54. ParserType.QA.value: qa,
  55. ParserType.TABLE.value: table,
  56. ParserType.RESUME.value: resume,
  57. ParserType.PICTURE.value: picture,
  58. ParserType.ONE.value: one,
  59. }
  60. def set_progress(task_id, from_page=0, to_page=-1,
  61. prog=None, msg="Processing..."):
  62. if prog is not None and prog < 0:
  63. msg = "[ERROR]" + msg
  64. cancel = TaskService.do_cancel(task_id)
  65. if cancel:
  66. msg += " [Canceled]"
  67. prog = -1
  68. if to_page > 0:
  69. if msg:
  70. msg = f"Page({from_page+1}~{to_page+1}): " + msg
  71. d = {"progress_msg": msg}
  72. if prog is not None:
  73. d["progress"] = prog
  74. try:
  75. TaskService.update_progress(task_id, d)
  76. except Exception as e:
  77. cron_logger.error("set_progress:({}), {}".format(task_id, str(e)))
  78. if cancel:
  79. sys.exit()
  80. def collect(comm, mod, tm):
  81. tasks = TaskService.get_tasks(tm, mod, comm)
  82. if len(tasks) == 0:
  83. time.sleep(1)
  84. return pd.DataFrame()
  85. tasks = pd.DataFrame(tasks)
  86. mtm = tasks["update_time"].max()
  87. cron_logger.info("TOTAL:{}, To:{}".format(len(tasks), mtm))
  88. return tasks
  89. def get_minio_binary(bucket, name):
  90. global MINIO
  91. return MINIO.get(bucket, name)
  92. def build(row):
  93. from timeit import default_timer as timer
  94. if row["size"] > DOC_MAXIMUM_SIZE:
  95. set_progress(row["id"], prog=-1, msg="File size exceeds( <= %dMb )" %
  96. (int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
  97. return []
  98. callback = partial(
  99. set_progress,
  100. row["id"],
  101. row["from_page"],
  102. row["to_page"])
  103. chunker = FACTORY[row["parser_id"].lower()]
  104. pool = Pool(processes=1)
  105. try:
  106. st = timer()
  107. thr = pool.apply_async(get_minio_binary, args=(row["kb_id"], row["location"]))
  108. binary = thr.get(timeout=90)
  109. pool.terminate()
  110. cron_logger.info(
  111. "From minio({}) {}/{}".format(timer()-st, row["location"], row["name"]))
  112. cks = chunker.chunk(row["name"], binary=binary, from_page=row["from_page"],
  113. to_page=row["to_page"], lang=row["language"], callback=callback,
  114. kb_id=row["kb_id"], parser_config=row["parser_config"], tenant_id=row["tenant_id"])
  115. cron_logger.info(
  116. "Chunkking({}) {}/{}".format(timer()-st, row["location"], row["name"]))
  117. except TimeoutError as e:
  118. callback(-1, f"Internal server error: Fetch file timeout. Could you try it again.")
  119. cron_logger.error(
  120. "Chunkking {}/{}: Fetch file timeout.".format(row["location"], row["name"]))
  121. return
  122. except Exception as e:
  123. if re.search("(No such file|not found)", str(e)):
  124. callback(-1, "Can not find file <%s>" % row["name"])
  125. else:
  126. callback(-1, f"Internal server error: %s" %
  127. str(e).replace("'", ""))
  128. pool.terminate()
  129. traceback.print_exc()
  130. cron_logger.error(
  131. "Chunkking {}/{}: {}".format(row["location"], row["name"], str(e)))
  132. return
  133. docs = []
  134. doc = {
  135. "doc_id": row["doc_id"],
  136. "kb_id": [str(row["kb_id"])]
  137. }
  138. for ck in cks:
  139. d = copy.deepcopy(doc)
  140. d.update(ck)
  141. md5 = hashlib.md5()
  142. md5.update((ck["content_with_weight"] +
  143. str(d["doc_id"])).encode("utf-8"))
  144. d["_id"] = md5.hexdigest()
  145. d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
  146. d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
  147. if not d.get("image"):
  148. docs.append(d)
  149. continue
  150. output_buffer = BytesIO()
  151. if isinstance(d["image"], bytes):
  152. output_buffer = BytesIO(d["image"])
  153. else:
  154. d["image"].save(output_buffer, format='JPEG')
  155. MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue())
  156. d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"])
  157. del d["image"]
  158. docs.append(d)
  159. return docs
  160. def init_kb(row):
  161. idxnm = search.index_name(row["tenant_id"])
  162. if ELASTICSEARCH.indexExist(idxnm):
  163. return
  164. return ELASTICSEARCH.createIdx(idxnm, json.load(
  165. open(os.path.join(get_project_base_directory(), "conf", "mapping.json"), "r")))
  166. def embedding(docs, mdl, parser_config={}, callback=None):
  167. batch_size = 32
  168. tts, cnts = [rmSpace(d["title_tks"]) for d in docs if d.get("title_tks")], [
  169. re.sub(r"</?(table|td|caption|tr|th)( [^<>]{0,12})?>", " ", d["content_with_weight"]) for d in docs]
  170. tk_count = 0
  171. if len(tts) == len(cnts):
  172. tts_ = np.array([])
  173. for i in range(0, len(tts), batch_size):
  174. vts, c = mdl.encode(tts[i: i + batch_size])
  175. if len(tts_) == 0:
  176. tts_ = vts
  177. else:
  178. tts_ = np.concatenate((tts_, vts), axis=0)
  179. tk_count += c
  180. callback(prog=0.6 + 0.1 * (i + 1) / len(tts), msg="")
  181. tts = tts_
  182. cnts_ = np.array([])
  183. for i in range(0, len(cnts), batch_size):
  184. vts, c = mdl.encode(cnts[i: i + batch_size])
  185. if len(cnts_) == 0:
  186. cnts_ = vts
  187. else:
  188. cnts_ = np.concatenate((cnts_, vts), axis=0)
  189. tk_count += c
  190. callback(prog=0.7 + 0.2 * (i + 1) / len(cnts), msg="")
  191. cnts = cnts_
  192. title_w = float(parser_config.get("filename_embd_weight", 0.1))
  193. vects = (title_w * tts + (1 - title_w) *
  194. cnts) if len(tts) == len(cnts) else cnts
  195. assert len(vects) == len(docs)
  196. for i, d in enumerate(docs):
  197. v = vects[i].tolist()
  198. d["q_%d_vec" % len(v)] = v
  199. return tk_count
  200. def main(comm, mod):
  201. tm_fnm = os.path.join(
  202. get_project_base_directory(),
  203. "rag/res",
  204. f"{comm}-{mod}.tm")
  205. tm = findMaxTm(tm_fnm)
  206. rows = collect(comm, mod, tm)
  207. if len(rows) == 0:
  208. return
  209. tmf = open(tm_fnm, "a+")
  210. for _, r in rows.iterrows():
  211. callback = partial(set_progress, r["id"], r["from_page"], r["to_page"])
  212. try:
  213. embd_mdl = LLMBundle(r["tenant_id"], LLMType.EMBEDDING)
  214. except Exception as e:
  215. callback(prog=-1, msg=str(e))
  216. continue
  217. cks = build(r)
  218. if cks is None:
  219. continue
  220. if not cks:
  221. tmf.write(str(r["update_time"]) + "\n")
  222. callback(1., "No chunk! Done!")
  223. continue
  224. # TODO: exception handler
  225. ## set_progress(r["did"], -1, "ERROR: ")
  226. callback(
  227. msg="Finished slicing files(%d). Start to embedding the content." %
  228. len(cks))
  229. try:
  230. tk_count = embedding(cks, embd_mdl, r["parser_config"], callback)
  231. except Exception as e:
  232. callback(-1, "Embedding error:{}".format(str(e)))
  233. cron_logger.error(str(e))
  234. tk_count = 0
  235. callback(msg="Finished embedding! Start to build index!")
  236. init_kb(r)
  237. chunk_count = len(set([c["_id"] for c in cks]))
  238. es_r = ELASTICSEARCH.bulk(cks, search.index_name(r["tenant_id"]))
  239. if es_r:
  240. callback(-1, "Index failure!")
  241. ELASTICSEARCH.deleteByQuery(
  242. Q("match", doc_id=r["doc_id"]), idxnm=search.index_name(r["tenant_id"]))
  243. cron_logger.error(str(es_r))
  244. else:
  245. if TaskService.do_cancel(r["id"]):
  246. ELASTICSEARCH.deleteByQuery(
  247. Q("match", doc_id=r["doc_id"]), idxnm=search.index_name(r["tenant_id"]))
  248. continue
  249. callback(1., "Done!")
  250. DocumentService.increment_chunk_num(
  251. r["doc_id"], r["kb_id"], tk_count, chunk_count, 0)
  252. cron_logger.info(
  253. "Chunk doc({}), token({}), chunks({})".format(
  254. r["id"], tk_count, len(cks)))
  255. tmf.write(str(r["update_time"]) + "\n")
  256. tmf.close()
  257. if __name__ == "__main__":
  258. peewee_logger = logging.getLogger('peewee')
  259. peewee_logger.propagate = False
  260. peewee_logger.addHandler(database_logger.handlers[0])
  261. peewee_logger.setLevel(database_logger.level)
  262. from mpi4py import MPI
  263. comm = MPI.COMM_WORLD
  264. while True:
  265. main(int(sys.argv[2]), int(sys.argv[1]))