您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564
  1. # Licensed under the Apache License, Version 2.0 (the "License");
  2. # you may not use this file except in compliance with the License.
  3. # You may obtain a copy of the License at
  4. #
  5. # http://www.apache.org/licenses/LICENSE-2.0
  6. #
  7. # Unless required by applicable law or agreed to in writing, software
  8. # distributed under the License is distributed on an "AS IS" BASIS,
  9. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. # See the License for the specific language governing permissions and
  11. # limitations under the License.
  12. #
  13. import copy
  14. import time
  15. import os
  16. from huggingface_hub import snapshot_download
  17. from .operators import *
  18. import numpy as np
  19. import onnxruntime as ort
  20. from .postprocess import build_post_process
  21. from rag.settings import cron_logger
  22. def transform(data, ops=None):
  23. """ transform """
  24. if ops is None:
  25. ops = []
  26. for op in ops:
  27. data = op(data)
  28. if data is None:
  29. return None
  30. return data
  31. def create_operators(op_param_list, global_config=None):
  32. """
  33. create operators based on the config
  34. Args:
  35. params(list): a dict list, used to create some operators
  36. """
  37. assert isinstance(
  38. op_param_list, list), ('operator config should be a list')
  39. ops = []
  40. for operator in op_param_list:
  41. assert isinstance(operator,
  42. dict) and len(operator) == 1, "yaml format error"
  43. op_name = list(operator)[0]
  44. param = {} if operator[op_name] is None else operator[op_name]
  45. if global_config is not None:
  46. param.update(global_config)
  47. op = eval(op_name)(**param)
  48. ops.append(op)
  49. return ops
  50. def load_model(model_dir, nm):
  51. model_file_path = os.path.join(model_dir, nm + ".onnx")
  52. if not os.path.exists(model_file_path):
  53. raise ValueError("not find model file path {}".format(
  54. model_file_path))
  55. if ort.get_device() == "GPU":
  56. sess = ort.InferenceSession(model_file_path, providers=['CUDAExecutionProvider'])
  57. else:
  58. sess = ort.InferenceSession(model_file_path, providers=['CPUExecutionProvider'])
  59. return sess, sess.get_inputs()[0]
  60. class TextRecognizer(object):
  61. def __init__(self, model_dir):
  62. self.rec_image_shape = [int(v) for v in "3, 48, 320".split(",")]
  63. self.rec_batch_num = 16
  64. postprocess_params = {
  65. 'name': 'CTCLabelDecode',
  66. "character_dict_path": os.path.join(os.path.dirname(os.path.realpath(__file__)), "ocr.res"),
  67. "use_space_char": True
  68. }
  69. self.postprocess_op = build_post_process(postprocess_params)
  70. self.predictor, self.input_tensor = load_model(model_dir, 'rec')
  71. def resize_norm_img(self, img, max_wh_ratio):
  72. imgC, imgH, imgW = self.rec_image_shape
  73. assert imgC == img.shape[2]
  74. imgW = int((imgH * max_wh_ratio))
  75. w = self.input_tensor.shape[3:][0]
  76. if isinstance(w, str):
  77. pass
  78. elif w is not None and w > 0:
  79. imgW = w
  80. h, w = img.shape[:2]
  81. ratio = w / float(h)
  82. if math.ceil(imgH * ratio) > imgW:
  83. resized_w = imgW
  84. else:
  85. resized_w = int(math.ceil(imgH * ratio))
  86. resized_image = cv2.resize(img, (resized_w, imgH))
  87. resized_image = resized_image.astype('float32')
  88. resized_image = resized_image.transpose((2, 0, 1)) / 255
  89. resized_image -= 0.5
  90. resized_image /= 0.5
  91. padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
  92. padding_im[:, :, 0:resized_w] = resized_image
  93. return padding_im
  94. def resize_norm_img_vl(self, img, image_shape):
  95. imgC, imgH, imgW = image_shape
  96. img = img[:, :, ::-1] # bgr2rgb
  97. resized_image = cv2.resize(
  98. img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
  99. resized_image = resized_image.astype('float32')
  100. resized_image = resized_image.transpose((2, 0, 1)) / 255
  101. return resized_image
  102. def resize_norm_img_srn(self, img, image_shape):
  103. imgC, imgH, imgW = image_shape
  104. img_black = np.zeros((imgH, imgW))
  105. im_hei = img.shape[0]
  106. im_wid = img.shape[1]
  107. if im_wid <= im_hei * 1:
  108. img_new = cv2.resize(img, (imgH * 1, imgH))
  109. elif im_wid <= im_hei * 2:
  110. img_new = cv2.resize(img, (imgH * 2, imgH))
  111. elif im_wid <= im_hei * 3:
  112. img_new = cv2.resize(img, (imgH * 3, imgH))
  113. else:
  114. img_new = cv2.resize(img, (imgW, imgH))
  115. img_np = np.asarray(img_new)
  116. img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
  117. img_black[:, 0:img_np.shape[1]] = img_np
  118. img_black = img_black[:, :, np.newaxis]
  119. row, col, c = img_black.shape
  120. c = 1
  121. return np.reshape(img_black, (c, row, col)).astype(np.float32)
  122. def srn_other_inputs(self, image_shape, num_heads, max_text_length):
  123. imgC, imgH, imgW = image_shape
  124. feature_dim = int((imgH / 8) * (imgW / 8))
  125. encoder_word_pos = np.array(range(0, feature_dim)).reshape(
  126. (feature_dim, 1)).astype('int64')
  127. gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
  128. (max_text_length, 1)).astype('int64')
  129. gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
  130. gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
  131. [-1, 1, max_text_length, max_text_length])
  132. gsrm_slf_attn_bias1 = np.tile(
  133. gsrm_slf_attn_bias1,
  134. [1, num_heads, 1, 1]).astype('float32') * [-1e9]
  135. gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
  136. [-1, 1, max_text_length, max_text_length])
  137. gsrm_slf_attn_bias2 = np.tile(
  138. gsrm_slf_attn_bias2,
  139. [1, num_heads, 1, 1]).astype('float32') * [-1e9]
  140. encoder_word_pos = encoder_word_pos[np.newaxis, :]
  141. gsrm_word_pos = gsrm_word_pos[np.newaxis, :]
  142. return [
  143. encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
  144. gsrm_slf_attn_bias2
  145. ]
  146. def process_image_srn(self, img, image_shape, num_heads, max_text_length):
  147. norm_img = self.resize_norm_img_srn(img, image_shape)
  148. norm_img = norm_img[np.newaxis, :]
  149. [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
  150. self.srn_other_inputs(image_shape, num_heads, max_text_length)
  151. gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
  152. gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
  153. encoder_word_pos = encoder_word_pos.astype(np.int64)
  154. gsrm_word_pos = gsrm_word_pos.astype(np.int64)
  155. return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
  156. gsrm_slf_attn_bias2)
  157. def resize_norm_img_sar(self, img, image_shape,
  158. width_downsample_ratio=0.25):
  159. imgC, imgH, imgW_min, imgW_max = image_shape
  160. h = img.shape[0]
  161. w = img.shape[1]
  162. valid_ratio = 1.0
  163. # make sure new_width is an integral multiple of width_divisor.
  164. width_divisor = int(1 / width_downsample_ratio)
  165. # resize
  166. ratio = w / float(h)
  167. resize_w = math.ceil(imgH * ratio)
  168. if resize_w % width_divisor != 0:
  169. resize_w = round(resize_w / width_divisor) * width_divisor
  170. if imgW_min is not None:
  171. resize_w = max(imgW_min, resize_w)
  172. if imgW_max is not None:
  173. valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
  174. resize_w = min(imgW_max, resize_w)
  175. resized_image = cv2.resize(img, (resize_w, imgH))
  176. resized_image = resized_image.astype('float32')
  177. # norm
  178. if image_shape[0] == 1:
  179. resized_image = resized_image / 255
  180. resized_image = resized_image[np.newaxis, :]
  181. else:
  182. resized_image = resized_image.transpose((2, 0, 1)) / 255
  183. resized_image -= 0.5
  184. resized_image /= 0.5
  185. resize_shape = resized_image.shape
  186. padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
  187. padding_im[:, :, 0:resize_w] = resized_image
  188. pad_shape = padding_im.shape
  189. return padding_im, resize_shape, pad_shape, valid_ratio
  190. def resize_norm_img_spin(self, img):
  191. img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
  192. # return padding_im
  193. img = cv2.resize(img, tuple([100, 32]), cv2.INTER_CUBIC)
  194. img = np.array(img, np.float32)
  195. img = np.expand_dims(img, -1)
  196. img = img.transpose((2, 0, 1))
  197. mean = [127.5]
  198. std = [127.5]
  199. mean = np.array(mean, dtype=np.float32)
  200. std = np.array(std, dtype=np.float32)
  201. mean = np.float32(mean.reshape(1, -1))
  202. stdinv = 1 / np.float32(std.reshape(1, -1))
  203. img -= mean
  204. img *= stdinv
  205. return img
  206. def resize_norm_img_svtr(self, img, image_shape):
  207. imgC, imgH, imgW = image_shape
  208. resized_image = cv2.resize(
  209. img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
  210. resized_image = resized_image.astype('float32')
  211. resized_image = resized_image.transpose((2, 0, 1)) / 255
  212. resized_image -= 0.5
  213. resized_image /= 0.5
  214. return resized_image
  215. def resize_norm_img_abinet(self, img, image_shape):
  216. imgC, imgH, imgW = image_shape
  217. resized_image = cv2.resize(
  218. img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
  219. resized_image = resized_image.astype('float32')
  220. resized_image = resized_image / 255.
  221. mean = np.array([0.485, 0.456, 0.406])
  222. std = np.array([0.229, 0.224, 0.225])
  223. resized_image = (
  224. resized_image - mean[None, None, ...]) / std[None, None, ...]
  225. resized_image = resized_image.transpose((2, 0, 1))
  226. resized_image = resized_image.astype('float32')
  227. return resized_image
  228. def norm_img_can(self, img, image_shape):
  229. img = cv2.cvtColor(
  230. img, cv2.COLOR_BGR2GRAY) # CAN only predict gray scale image
  231. if self.rec_image_shape[0] == 1:
  232. h, w = img.shape
  233. _, imgH, imgW = self.rec_image_shape
  234. if h < imgH or w < imgW:
  235. padding_h = max(imgH - h, 0)
  236. padding_w = max(imgW - w, 0)
  237. img_padded = np.pad(img, ((0, padding_h), (0, padding_w)),
  238. 'constant',
  239. constant_values=(255))
  240. img = img_padded
  241. img = np.expand_dims(img, 0) / 255.0 # h,w,c -> c,h,w
  242. img = img.astype('float32')
  243. return img
  244. def __call__(self, img_list):
  245. img_num = len(img_list)
  246. # Calculate the aspect ratio of all text bars
  247. width_list = []
  248. for img in img_list:
  249. width_list.append(img.shape[1] / float(img.shape[0]))
  250. # Sorting can speed up the recognition process
  251. indices = np.argsort(np.array(width_list))
  252. rec_res = [['', 0.0]] * img_num
  253. batch_num = self.rec_batch_num
  254. st = time.time()
  255. for beg_img_no in range(0, img_num, batch_num):
  256. end_img_no = min(img_num, beg_img_no + batch_num)
  257. norm_img_batch = []
  258. imgC, imgH, imgW = self.rec_image_shape[:3]
  259. max_wh_ratio = imgW / imgH
  260. # max_wh_ratio = 0
  261. for ino in range(beg_img_no, end_img_no):
  262. h, w = img_list[indices[ino]].shape[0:2]
  263. wh_ratio = w * 1.0 / h
  264. max_wh_ratio = max(max_wh_ratio, wh_ratio)
  265. for ino in range(beg_img_no, end_img_no):
  266. norm_img = self.resize_norm_img(img_list[indices[ino]],
  267. max_wh_ratio)
  268. norm_img = norm_img[np.newaxis, :]
  269. norm_img_batch.append(norm_img)
  270. norm_img_batch = np.concatenate(norm_img_batch)
  271. norm_img_batch = norm_img_batch.copy()
  272. input_dict = {}
  273. input_dict[self.input_tensor.name] = norm_img_batch
  274. outputs = self.predictor.run(None, input_dict)
  275. preds = outputs[0]
  276. rec_result = self.postprocess_op(preds)
  277. for rno in range(len(rec_result)):
  278. rec_res[indices[beg_img_no + rno]] = rec_result[rno]
  279. return rec_res, time.time() - st
  280. class TextDetector(object):
  281. def __init__(self, model_dir):
  282. pre_process_list = [{
  283. 'DetResizeForTest': {
  284. 'limit_side_len': 960,
  285. 'limit_type': "max",
  286. }
  287. }, {
  288. 'NormalizeImage': {
  289. 'std': [0.229, 0.224, 0.225],
  290. 'mean': [0.485, 0.456, 0.406],
  291. 'scale': '1./255.',
  292. 'order': 'hwc'
  293. }
  294. }, {
  295. 'ToCHWImage': None
  296. }, {
  297. 'KeepKeys': {
  298. 'keep_keys': ['image', 'shape']
  299. }
  300. }]
  301. postprocess_params = {"name": "DBPostProcess", "thresh": 0.3, "box_thresh": 0.6, "max_candidates": 1000,
  302. "unclip_ratio": 1.5, "use_dilation": False, "score_mode": "fast", "box_type": "quad"}
  303. self.postprocess_op = build_post_process(postprocess_params)
  304. self.predictor, self.input_tensor = load_model(model_dir, 'det')
  305. img_h, img_w = self.input_tensor.shape[2:]
  306. if isinstance(img_h, str) or isinstance(img_w, str):
  307. pass
  308. elif img_h is not None and img_w is not None and img_h > 0 and img_w > 0:
  309. pre_process_list[0] = {
  310. 'DetResizeForTest': {
  311. 'image_shape': [img_h, img_w]
  312. }
  313. }
  314. self.preprocess_op = create_operators(pre_process_list)
  315. def order_points_clockwise(self, pts):
  316. rect = np.zeros((4, 2), dtype="float32")
  317. s = pts.sum(axis=1)
  318. rect[0] = pts[np.argmin(s)]
  319. rect[2] = pts[np.argmax(s)]
  320. tmp = np.delete(pts, (np.argmin(s), np.argmax(s)), axis=0)
  321. diff = np.diff(np.array(tmp), axis=1)
  322. rect[1] = tmp[np.argmin(diff)]
  323. rect[3] = tmp[np.argmax(diff)]
  324. return rect
  325. def clip_det_res(self, points, img_height, img_width):
  326. for pno in range(points.shape[0]):
  327. points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
  328. points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
  329. return points
  330. def filter_tag_det_res(self, dt_boxes, image_shape):
  331. img_height, img_width = image_shape[0:2]
  332. dt_boxes_new = []
  333. for box in dt_boxes:
  334. if isinstance(box, list):
  335. box = np.array(box)
  336. box = self.order_points_clockwise(box)
  337. box = self.clip_det_res(box, img_height, img_width)
  338. rect_width = int(np.linalg.norm(box[0] - box[1]))
  339. rect_height = int(np.linalg.norm(box[0] - box[3]))
  340. if rect_width <= 3 or rect_height <= 3:
  341. continue
  342. dt_boxes_new.append(box)
  343. dt_boxes = np.array(dt_boxes_new)
  344. return dt_boxes
  345. def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
  346. img_height, img_width = image_shape[0:2]
  347. dt_boxes_new = []
  348. for box in dt_boxes:
  349. if isinstance(box, list):
  350. box = np.array(box)
  351. box = self.clip_det_res(box, img_height, img_width)
  352. dt_boxes_new.append(box)
  353. dt_boxes = np.array(dt_boxes_new)
  354. return dt_boxes
  355. def __call__(self, img):
  356. ori_im = img.copy()
  357. data = {'image': img}
  358. st = time.time()
  359. data = transform(data, self.preprocess_op)
  360. img, shape_list = data
  361. if img is None:
  362. return None, 0
  363. img = np.expand_dims(img, axis=0)
  364. shape_list = np.expand_dims(shape_list, axis=0)
  365. img = img.copy()
  366. input_dict = {}
  367. input_dict[self.input_tensor.name] = img
  368. outputs = self.predictor.run(None, input_dict)
  369. post_result = self.postprocess_op({"maps": outputs[0]}, shape_list)
  370. dt_boxes = post_result[0]['points']
  371. dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
  372. return dt_boxes, time.time() - st
  373. class OCR(object):
  374. def __init__(self, model_dir=None):
  375. """
  376. If you have trouble downloading HuggingFace models, -_^ this might help!!
  377. For Linux:
  378. export HF_ENDPOINT=https://hf-mirror.com
  379. For Windows:
  380. Good luck
  381. ^_-
  382. """
  383. if not model_dir:
  384. model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc")
  385. self.text_detector = TextDetector(model_dir)
  386. self.text_recognizer = TextRecognizer(model_dir)
  387. self.drop_score = 0.5
  388. self.crop_image_res_index = 0
  389. def get_rotate_crop_image(self, img, points):
  390. '''
  391. img_height, img_width = img.shape[0:2]
  392. left = int(np.min(points[:, 0]))
  393. right = int(np.max(points[:, 0]))
  394. top = int(np.min(points[:, 1]))
  395. bottom = int(np.max(points[:, 1]))
  396. img_crop = img[top:bottom, left:right, :].copy()
  397. points[:, 0] = points[:, 0] - left
  398. points[:, 1] = points[:, 1] - top
  399. '''
  400. assert len(points) == 4, "shape of points must be 4*2"
  401. img_crop_width = int(
  402. max(
  403. np.linalg.norm(points[0] - points[1]),
  404. np.linalg.norm(points[2] - points[3])))
  405. img_crop_height = int(
  406. max(
  407. np.linalg.norm(points[0] - points[3]),
  408. np.linalg.norm(points[1] - points[2])))
  409. pts_std = np.float32([[0, 0], [img_crop_width, 0],
  410. [img_crop_width, img_crop_height],
  411. [0, img_crop_height]])
  412. M = cv2.getPerspectiveTransform(points, pts_std)
  413. dst_img = cv2.warpPerspective(
  414. img,
  415. M, (img_crop_width, img_crop_height),
  416. borderMode=cv2.BORDER_REPLICATE,
  417. flags=cv2.INTER_CUBIC)
  418. dst_img_height, dst_img_width = dst_img.shape[0:2]
  419. if dst_img_height * 1.0 / dst_img_width >= 1.5:
  420. dst_img = np.rot90(dst_img)
  421. return dst_img
  422. def sorted_boxes(self, dt_boxes):
  423. """
  424. Sort text boxes in order from top to bottom, left to right
  425. args:
  426. dt_boxes(array):detected text boxes with shape [4, 2]
  427. return:
  428. sorted boxes(array) with shape [4, 2]
  429. """
  430. num_boxes = dt_boxes.shape[0]
  431. sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
  432. _boxes = list(sorted_boxes)
  433. for i in range(num_boxes - 1):
  434. for j in range(i, -1, -1):
  435. if abs(_boxes[j + 1][0][1] - _boxes[j][0][1]) < 10 and \
  436. (_boxes[j + 1][0][0] < _boxes[j][0][0]):
  437. tmp = _boxes[j]
  438. _boxes[j] = _boxes[j + 1]
  439. _boxes[j + 1] = tmp
  440. else:
  441. break
  442. return _boxes
  443. def __call__(self, img, cls=True):
  444. time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0}
  445. if img is None:
  446. return None, None, time_dict
  447. start = time.time()
  448. ori_im = img.copy()
  449. dt_boxes, elapse = self.text_detector(img)
  450. time_dict['det'] = elapse
  451. if dt_boxes is None:
  452. end = time.time()
  453. time_dict['all'] = end - start
  454. return None, None, time_dict
  455. else:
  456. cron_logger.debug("dt_boxes num : {}, elapsed : {}".format(
  457. len(dt_boxes), elapse))
  458. img_crop_list = []
  459. dt_boxes = self.sorted_boxes(dt_boxes)
  460. for bno in range(len(dt_boxes)):
  461. tmp_box = copy.deepcopy(dt_boxes[bno])
  462. img_crop = self.get_rotate_crop_image(ori_im, tmp_box)
  463. img_crop_list.append(img_crop)
  464. rec_res, elapse = self.text_recognizer(img_crop_list)
  465. time_dict['rec'] = elapse
  466. cron_logger.debug("rec_res num : {}, elapsed : {}".format(
  467. len(rec_res), elapse))
  468. filter_boxes, filter_rec_res = [], []
  469. for box, rec_result in zip(dt_boxes, rec_res):
  470. text, score = rec_result
  471. if score >= self.drop_score:
  472. filter_boxes.append(box)
  473. filter_rec_res.append(rec_result)
  474. end = time.time()
  475. time_dict['all'] = end - start
  476. #for bno in range(len(img_crop_list)):
  477. # print(f"{bno}, {rec_res[bno]}")
  478. return list(zip([a.tolist() for a in filter_boxes], filter_rec_res))