| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305 | 
							- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import json
 - import logging
 - import os
 - 
 - from api.db.services.user_service import TenantService
 - from api.utils.file_utils import get_project_base_directory
 - from rag.llm import EmbeddingModel, CvModel, ChatModel, RerankModel, Seq2txtModel, TTSModel
 - from api.db import LLMType
 - from api.db.db_models import DB
 - from api.db.db_models import LLMFactories, LLM, TenantLLM
 - from api.db.services.common_service import CommonService
 - 
 - 
 - class LLMFactoriesService(CommonService):
 -     model = LLMFactories
 - 
 - 
 - class LLMService(CommonService):
 -     model = LLM
 - 
 - 
 - class TenantLLMService(CommonService):
 -     model = TenantLLM
 - 
 -     @classmethod
 -     @DB.connection_context()
 -     def get_api_key(cls, tenant_id, model_name):
 -         mdlnm, fid = TenantLLMService.split_model_name_and_factory(model_name)
 -         if not fid:
 -             objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm)
 -         else:
 -             objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm, llm_factory=fid)
 -         if not objs:
 -             return
 -         return objs[0]
 - 
 -     @classmethod
 -     @DB.connection_context()
 -     def get_my_llms(cls, tenant_id):
 -         fields = [
 -             cls.model.llm_factory,
 -             LLMFactories.logo,
 -             LLMFactories.tags,
 -             cls.model.model_type,
 -             cls.model.llm_name,
 -             cls.model.used_tokens
 -         ]
 -         objs = cls.model.select(*fields).join(LLMFactories, on=(cls.model.llm_factory == LLMFactories.name)).where(
 -             cls.model.tenant_id == tenant_id, ~cls.model.api_key.is_null()).dicts()
 - 
 -         return list(objs)
 - 
 -     @staticmethod
 -     def split_model_name_and_factory(model_name):
 -         arr = model_name.split("@")
 -         if len(arr) < 2:
 -             return model_name, None
 -         if len(arr) > 2:
 -             return "@".join(arr[0:-1]), arr[-1]
 - 
 -         # model name must be xxx@yyy
 -         try:
 -             model_factories = json.load(open(os.path.join(get_project_base_directory(), "conf/llm_factories.json"), "r"))["factory_llm_infos"]
 -             model_providers = set([f["name"] for f in model_factories])
 -             if arr[-1] not in model_providers:
 -                 return model_name, None
 -             return arr[0], arr[-1]
 -         except Exception as e:
 -             logging.exception(f"TenantLLMService.split_model_name_and_factory got exception: {e}")
 -         return model_name, None
 - 
 -     @classmethod
 -     @DB.connection_context()
 -     def model_instance(cls, tenant_id, llm_type,
 -                        llm_name=None, lang="Chinese"):
 -         e, tenant = TenantService.get_by_id(tenant_id)
 -         if not e:
 -             raise LookupError("Tenant not found")
 - 
 -         if llm_type == LLMType.EMBEDDING.value:
 -             mdlnm = tenant.embd_id if not llm_name else llm_name
 -         elif llm_type == LLMType.SPEECH2TEXT.value:
 -             mdlnm = tenant.asr_id
 -         elif llm_type == LLMType.IMAGE2TEXT.value:
 -             mdlnm = tenant.img2txt_id if not llm_name else llm_name
 -         elif llm_type == LLMType.CHAT.value:
 -             mdlnm = tenant.llm_id if not llm_name else llm_name
 -         elif llm_type == LLMType.RERANK:
 -             mdlnm = tenant.rerank_id if not llm_name else llm_name
 -         elif llm_type == LLMType.TTS:
 -             mdlnm = tenant.tts_id if not llm_name else llm_name
 -         else:
 -             assert False, "LLM type error"
 - 
 -         model_config = cls.get_api_key(tenant_id, mdlnm)
 -         mdlnm, fid = TenantLLMService.split_model_name_and_factory(mdlnm)
 -         if model_config:
 -             model_config = model_config.to_dict()
 -         if not model_config:
 -             if llm_type in [LLMType.EMBEDDING, LLMType.RERANK]:
 -                 llm = LLMService.query(llm_name=mdlnm) if not fid else LLMService.query(llm_name=mdlnm, fid=fid)
 -                 if llm and llm[0].fid in ["Youdao", "FastEmbed", "BAAI"]:
 -                     model_config = {"llm_factory": llm[0].fid, "api_key": "", "llm_name": mdlnm, "api_base": ""}
 -             if not model_config:
 -                 if mdlnm == "flag-embedding":
 -                     model_config = {"llm_factory": "Tongyi-Qianwen", "api_key": "",
 -                                     "llm_name": llm_name, "api_base": ""}
 -                 else:
 -                     if not mdlnm:
 -                         raise LookupError(f"Type of {llm_type} model is not set.")
 -                     raise LookupError("Model({}) not authorized".format(mdlnm))
 - 
 -         if llm_type == LLMType.EMBEDDING.value:
 -             if model_config["llm_factory"] not in EmbeddingModel:
 -                 return
 -             return EmbeddingModel[model_config["llm_factory"]](
 -                 model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
 - 
 -         if llm_type == LLMType.RERANK:
 -             if model_config["llm_factory"] not in RerankModel:
 -                 return
 -             return RerankModel[model_config["llm_factory"]](
 -                 model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
 - 
 -         if llm_type == LLMType.IMAGE2TEXT.value:
 -             if model_config["llm_factory"] not in CvModel:
 -                 return
 -             return CvModel[model_config["llm_factory"]](
 -                 model_config["api_key"], model_config["llm_name"], lang,
 -                 base_url=model_config["api_base"]
 -             )
 - 
 -         if llm_type == LLMType.CHAT.value:
 -             if model_config["llm_factory"] not in ChatModel:
 -                 return
 -             return ChatModel[model_config["llm_factory"]](
 -                 model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
 - 
 -         if llm_type == LLMType.SPEECH2TEXT:
 -             if model_config["llm_factory"] not in Seq2txtModel:
 -                 return
 -             return Seq2txtModel[model_config["llm_factory"]](
 -                 key=model_config["api_key"], model_name=model_config["llm_name"],
 -                 lang=lang,
 -                 base_url=model_config["api_base"]
 -             )
 -         if llm_type == LLMType.TTS:
 -             if model_config["llm_factory"] not in TTSModel:
 -                 return
 -             return TTSModel[model_config["llm_factory"]](
 -                 model_config["api_key"],
 -                 model_config["llm_name"],
 -                 base_url=model_config["api_base"],
 -             )
 - 
 -     @classmethod
 -     @DB.connection_context()
 -     def increase_usage(cls, tenant_id, llm_type, used_tokens, llm_name=None):
 -         e, tenant = TenantService.get_by_id(tenant_id)
 -         if not e:
 -             raise LookupError("Tenant not found")
 - 
 -         if llm_type == LLMType.EMBEDDING.value:
 -             mdlnm = tenant.embd_id
 -         elif llm_type == LLMType.SPEECH2TEXT.value:
 -             mdlnm = tenant.asr_id
 -         elif llm_type == LLMType.IMAGE2TEXT.value:
 -             mdlnm = tenant.img2txt_id
 -         elif llm_type == LLMType.CHAT.value:
 -             mdlnm = tenant.llm_id if not llm_name else llm_name
 -         elif llm_type == LLMType.RERANK:
 -             mdlnm = tenant.rerank_id if not llm_name else llm_name
 -         elif llm_type == LLMType.TTS:
 -             mdlnm = tenant.tts_id if not llm_name else llm_name
 -         else:
 -             assert False, "LLM type error"
 - 
 -         llm_name, llm_factory = TenantLLMService.split_model_name_and_factory(mdlnm)
 - 
 -         num = 0
 -         try:
 -             if llm_factory:
 -                 tenant_llms = cls.query(tenant_id=tenant_id, llm_name=llm_name, llm_factory=llm_factory)
 -             else:
 -                 tenant_llms = cls.query(tenant_id=tenant_id, llm_name=llm_name)
 -             if not tenant_llms:
 -                 return num
 -             else:
 -                 tenant_llm = tenant_llms[0]
 -                 num = cls.model.update(used_tokens=tenant_llm.used_tokens + used_tokens) \
 -                     .where(cls.model.tenant_id == tenant_id, cls.model.llm_factory == tenant_llm.llm_factory, cls.model.llm_name == llm_name) \
 -                     .execute()
 -         except Exception:
 -             logging.exception("TenantLLMService.increase_usage got exception")
 -         return num
 - 
 -     @classmethod
 -     @DB.connection_context()
 -     def get_openai_models(cls):
 -         objs = cls.model.select().where(
 -             (cls.model.llm_factory == "OpenAI"),
 -             ~(cls.model.llm_name == "text-embedding-3-small"),
 -             ~(cls.model.llm_name == "text-embedding-3-large")
 -         ).dicts()
 -         return list(objs)
 - 
 - 
 - class LLMBundle(object):
 -     def __init__(self, tenant_id, llm_type, llm_name=None, lang="Chinese"):
 -         self.tenant_id = tenant_id
 -         self.llm_type = llm_type
 -         self.llm_name = llm_name
 -         self.mdl = TenantLLMService.model_instance(
 -             tenant_id, llm_type, llm_name, lang=lang)
 -         assert self.mdl, "Can't find model for {}/{}/{}".format(
 -             tenant_id, llm_type, llm_name)
 -         self.max_length = 8192
 -         for lm in LLMService.query(llm_name=llm_name):
 -             self.max_length = lm.max_tokens
 -             break
 - 
 -     def encode(self, texts: list):
 -         embeddings, used_tokens = self.mdl.encode(texts)
 -         if not TenantLLMService.increase_usage(
 -                 self.tenant_id, self.llm_type, used_tokens):
 -             logging.error(
 -                 "LLMBundle.encode can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
 -         return embeddings, used_tokens
 - 
 -     def encode_queries(self, query: str):
 -         emd, used_tokens = self.mdl.encode_queries(query)
 -         if not TenantLLMService.increase_usage(
 -                 self.tenant_id, self.llm_type, used_tokens):
 -             logging.error(
 -                 "LLMBundle.encode_queries can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
 -         return emd, used_tokens
 - 
 -     def similarity(self, query: str, texts: list):
 -         sim, used_tokens = self.mdl.similarity(query, texts)
 -         if not TenantLLMService.increase_usage(
 -                 self.tenant_id, self.llm_type, used_tokens):
 -             logging.error(
 -                 "LLMBundle.similarity can't update token usage for {}/RERANK used_tokens: {}".format(self.tenant_id, used_tokens))
 -         return sim, used_tokens
 - 
 -     def describe(self, image, max_tokens=300):
 -         txt, used_tokens = self.mdl.describe(image, max_tokens)
 -         if not TenantLLMService.increase_usage(
 -                 self.tenant_id, self.llm_type, used_tokens):
 -             logging.error(
 -                 "LLMBundle.describe can't update token usage for {}/IMAGE2TEXT used_tokens: {}".format(self.tenant_id, used_tokens))
 -         return txt
 - 
 -     def transcription(self, audio):
 -         txt, used_tokens = self.mdl.transcription(audio)
 -         if not TenantLLMService.increase_usage(
 -                 self.tenant_id, self.llm_type, used_tokens):
 -             logging.error(
 -                 "LLMBundle.transcription can't update token usage for {}/SEQUENCE2TXT used_tokens: {}".format(self.tenant_id, used_tokens))
 -         return txt
 - 
 -     def tts(self, text):
 -         for chunk in self.mdl.tts(text):
 -             if isinstance(chunk, int):
 -                 if not TenantLLMService.increase_usage(
 -                         self.tenant_id, self.llm_type, chunk, self.llm_name):
 -                     logging.error(
 -                         "LLMBundle.tts can't update token usage for {}/TTS".format(self.tenant_id))
 -                 return
 -             yield chunk
 - 
 -     def chat(self, system, history, gen_conf):
 -         txt, used_tokens = self.mdl.chat(system, history, gen_conf)
 -         if isinstance(txt, int) and not TenantLLMService.increase_usage(
 -                 self.tenant_id, self.llm_type, used_tokens, self.llm_name):
 -             logging.error(
 -                 "LLMBundle.chat can't update token usage for {}/CHAT llm_name: {}, used_tokens: {}".format(self.tenant_id, self.llm_name,
 -                                                                                                            used_tokens))
 -         return txt
 - 
 -     def chat_streamly(self, system, history, gen_conf):
 -         for txt in self.mdl.chat_streamly(system, history, gen_conf):
 -             if isinstance(txt, int):
 -                 if not TenantLLMService.increase_usage(
 -                         self.tenant_id, self.llm_type, txt, self.llm_name):
 -                     logging.error(
 -                         "LLMBundle.chat_streamly can't update token usage for {}/CHAT llm_name: {}, content: {}".format(self.tenant_id, self.llm_name,
 -                                                                                                                         txt))
 -                 return
 -             yield txt
 
 
  |