Nelze vybrat více než 25 témat Téma musí začínat písmenem nebo číslem, může obsahovat pomlčky („-“) a může být dlouhé až 35 znaků.

conversation_app.py 15KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import re
  17. from flask import request
  18. from flask_login import login_required
  19. from api.db.services.dialog_service import DialogService, ConversationService
  20. from api.db import LLMType
  21. from api.db.services.knowledgebase_service import KnowledgebaseService
  22. from api.db.services.llm_service import LLMService, LLMBundle
  23. from api.settings import access_logger, stat_logger, retrievaler, chat_logger
  24. from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
  25. from api.utils import get_uuid
  26. from api.utils.api_utils import get_json_result
  27. from rag.app.resume import forbidden_select_fields4resume
  28. from rag.nlp.search import index_name
  29. from rag.utils import num_tokens_from_string, encoder, rmSpace
  30. @manager.route('/set', methods=['POST'])
  31. @login_required
  32. def set_conversation():
  33. req = request.json
  34. conv_id = req.get("conversation_id")
  35. if conv_id:
  36. del req["conversation_id"]
  37. try:
  38. if not ConversationService.update_by_id(conv_id, req):
  39. return get_data_error_result(retmsg="Conversation not found!")
  40. e, conv = ConversationService.get_by_id(conv_id)
  41. if not e:
  42. return get_data_error_result(
  43. retmsg="Fail to update a conversation!")
  44. conv = conv.to_dict()
  45. return get_json_result(data=conv)
  46. except Exception as e:
  47. return server_error_response(e)
  48. try:
  49. e, dia = DialogService.get_by_id(req["dialog_id"])
  50. if not e:
  51. return get_data_error_result(retmsg="Dialog not found")
  52. conv = {
  53. "id": get_uuid(),
  54. "dialog_id": req["dialog_id"],
  55. "name": req.get("name", "New conversation"),
  56. "message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}]
  57. }
  58. ConversationService.save(**conv)
  59. e, conv = ConversationService.get_by_id(conv["id"])
  60. if not e:
  61. return get_data_error_result(retmsg="Fail to new a conversation!")
  62. conv = conv.to_dict()
  63. return get_json_result(data=conv)
  64. except Exception as e:
  65. return server_error_response(e)
  66. @manager.route('/get', methods=['GET'])
  67. @login_required
  68. def get():
  69. conv_id = request.args["conversation_id"]
  70. try:
  71. e, conv = ConversationService.get_by_id(conv_id)
  72. if not e:
  73. return get_data_error_result(retmsg="Conversation not found!")
  74. conv = conv.to_dict()
  75. return get_json_result(data=conv)
  76. except Exception as e:
  77. return server_error_response(e)
  78. @manager.route('/rm', methods=['POST'])
  79. @login_required
  80. def rm():
  81. conv_ids = request.json["conversation_ids"]
  82. try:
  83. for cid in conv_ids:
  84. ConversationService.delete_by_id(cid)
  85. return get_json_result(data=True)
  86. except Exception as e:
  87. return server_error_response(e)
  88. @manager.route('/list', methods=['GET'])
  89. @login_required
  90. def list_convsersation():
  91. dialog_id = request.args["dialog_id"]
  92. try:
  93. convs = ConversationService.query(
  94. dialog_id=dialog_id,
  95. order_by=ConversationService.model.create_time,
  96. reverse=True)
  97. convs = [d.to_dict() for d in convs]
  98. return get_json_result(data=convs)
  99. except Exception as e:
  100. return server_error_response(e)
  101. def message_fit_in(msg, max_length=4000):
  102. def count():
  103. nonlocal msg
  104. tks_cnts = []
  105. for m in msg:
  106. tks_cnts.append(
  107. {"role": m["role"], "count": num_tokens_from_string(m["content"])})
  108. total = 0
  109. for m in tks_cnts:
  110. total += m["count"]
  111. return total
  112. c = count()
  113. if c < max_length:
  114. return c, msg
  115. msg_ = [m for m in msg[:-1] if m.role == "system"]
  116. msg_.append(msg[-1])
  117. msg = msg_
  118. c = count()
  119. if c < max_length:
  120. return c, msg
  121. ll = num_tokens_from_string(msg_[0].content)
  122. l = num_tokens_from_string(msg_[-1].content)
  123. if ll / (ll + l) > 0.8:
  124. m = msg_[0].content
  125. m = encoder.decode(encoder.encode(m)[:max_length - l])
  126. msg[0].content = m
  127. return max_length, msg
  128. m = msg_[1].content
  129. m = encoder.decode(encoder.encode(m)[:max_length - l])
  130. msg[1].content = m
  131. return max_length, msg
  132. @manager.route('/completion', methods=['POST'])
  133. @login_required
  134. @validate_request("conversation_id", "messages")
  135. def completion():
  136. req = request.json
  137. msg = []
  138. for m in req["messages"]:
  139. if m["role"] == "system":
  140. continue
  141. if m["role"] == "assistant" and not msg:
  142. continue
  143. msg.append({"role": m["role"], "content": m["content"]})
  144. try:
  145. e, conv = ConversationService.get_by_id(req["conversation_id"])
  146. if not e:
  147. return get_data_error_result(retmsg="Conversation not found!")
  148. conv.message.append(msg[-1])
  149. e, dia = DialogService.get_by_id(conv.dialog_id)
  150. if not e:
  151. return get_data_error_result(retmsg="Dialog not found!")
  152. del req["conversation_id"]
  153. del req["messages"]
  154. ans = chat(dia, msg, **req)
  155. if not conv.reference:
  156. conv.reference = []
  157. conv.reference.append(ans["reference"])
  158. conv.message.append({"role": "assistant", "content": ans["answer"]})
  159. ConversationService.update_by_id(conv.id, conv.to_dict())
  160. return get_json_result(data=ans)
  161. except Exception as e:
  162. return server_error_response(e)
  163. def chat(dialog, messages, **kwargs):
  164. assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
  165. llm = LLMService.query(llm_name=dialog.llm_id)
  166. if not llm:
  167. raise LookupError("LLM(%s) not found" % dialog.llm_id)
  168. llm = llm[0]
  169. questions = [m["content"] for m in messages if m["role"] == "user"]
  170. embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING)
  171. chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
  172. field_map = KnowledgebaseService.get_field_map(dialog.kb_ids)
  173. # try to use sql if field mapping is good to go
  174. if field_map:
  175. chat_logger.info("Use SQL to retrieval:{}".format(questions[-1]))
  176. ans = use_sql(questions[-1], field_map, dialog.tenant_id, chat_mdl)
  177. if ans: return ans
  178. prompt_config = dialog.prompt_config
  179. for p in prompt_config["parameters"]:
  180. if p["key"] == "knowledge":
  181. continue
  182. if p["key"] not in kwargs and not p["optional"]:
  183. raise KeyError("Miss parameter: " + p["key"])
  184. if p["key"] not in kwargs:
  185. prompt_config["system"] = prompt_config["system"].replace(
  186. "{%s}" % p["key"], " ")
  187. for _ in range(len(questions) // 2):
  188. questions.append(questions[-1])
  189. if "knowledge" not in [p["key"] for p in prompt_config["parameters"]]:
  190. kbinfos = {"total": 0, "chunks": [], "doc_aggs": []}
  191. else:
  192. kbinfos = retrievaler.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
  193. dialog.similarity_threshold,
  194. dialog.vector_similarity_weight, top=1024, aggs=False)
  195. knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
  196. chat_logger.info(
  197. "{}->{}".format(" ".join(questions), "\n->".join(knowledges)))
  198. if not knowledges and prompt_config.get("empty_response"):
  199. return {
  200. "answer": prompt_config["empty_response"], "reference": kbinfos}
  201. kwargs["knowledge"] = "\n".join(knowledges)
  202. gen_conf = dialog.llm_setting
  203. msg = [{"role": m["role"], "content": m["content"]}
  204. for m in messages if m["role"] != "system"]
  205. used_token_count, msg = message_fit_in(msg, int(llm.max_tokens * 0.97))
  206. if "max_tokens" in gen_conf:
  207. gen_conf["max_tokens"] = min(
  208. gen_conf["max_tokens"],
  209. llm.max_tokens - used_token_count)
  210. answer = chat_mdl.chat(
  211. prompt_config["system"].format(
  212. **kwargs), msg, gen_conf)
  213. chat_logger.info("User: {}|Assistant: {}".format(
  214. msg[-1]["content"], answer))
  215. if knowledges:
  216. answer, idx = retrievaler.insert_citations(answer,
  217. [ck["content_ltks"]
  218. for ck in kbinfos["chunks"]],
  219. [ck["vector"]
  220. for ck in kbinfos["chunks"]],
  221. embd_mdl,
  222. tkweight=1 - dialog.vector_similarity_weight,
  223. vtweight=dialog.vector_similarity_weight)
  224. idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
  225. recall_docs = [
  226. d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
  227. if not recall_docs: recall_docs = kbinfos["doc_aggs"]
  228. kbinfos["doc_aggs"] = recall_docs
  229. for c in kbinfos["chunks"]:
  230. if c.get("vector"):
  231. del c["vector"]
  232. if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api")>=0:
  233. answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
  234. return {"answer": answer, "reference": kbinfos}
  235. def use_sql(question, field_map, tenant_id, chat_mdl):
  236. sys_prompt = "你是一个DBA。你需要这对以下表的字段结构,根据用户的问题列表,写出最后一个问题对应的SQL。"
  237. user_promt = """
  238. 表名:{};
  239. 数据库表字段说明如下:
  240. {}
  241. 问题如下:
  242. {}
  243. 请写出SQL, 且只要SQL,不要有其他说明及文字。
  244. """.format(
  245. index_name(tenant_id),
  246. "\n".join([f"{k}: {v}" for k, v in field_map.items()]),
  247. question
  248. )
  249. tried_times = 0
  250. def get_table():
  251. nonlocal sys_prompt, user_promt, question, tried_times
  252. sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_promt}], {
  253. "temperature": 0.06})
  254. print(user_promt, sql)
  255. chat_logger.info(f"“{question}”==>{user_promt} get SQL: {sql}")
  256. sql = re.sub(r"[\r\n]+", " ", sql.lower())
  257. sql = re.sub(r".*select ", "select ", sql.lower())
  258. sql = re.sub(r" +", " ", sql)
  259. sql = re.sub(r"([;;]|```).*", "", sql)
  260. if sql[:len("select ")] != "select ":
  261. return None, None
  262. if not re.search(r"((sum|avg|max|min)\(|group by )", sql.lower()):
  263. if sql[:len("select *")] != "select *":
  264. sql = "select doc_id,docnm_kwd," + sql[6:]
  265. else:
  266. flds = []
  267. for k in field_map.keys():
  268. if k in forbidden_select_fields4resume:
  269. continue
  270. if len(flds) > 11:
  271. break
  272. flds.append(k)
  273. sql = "select doc_id,docnm_kwd," + ",".join(flds) + sql[8:]
  274. print(f"“{question}” get SQL(refined): {sql}")
  275. chat_logger.info(f"“{question}” get SQL(refined): {sql}")
  276. tried_times += 1
  277. return retrievaler.sql_retrieval(sql, format="json"), sql
  278. tbl, sql = get_table()
  279. if tbl is None:
  280. return None
  281. if tbl.get("error") and tried_times <= 2:
  282. user_promt = """
  283. 表名:{};
  284. 数据库表字段说明如下:
  285. {}
  286. 问题如下:
  287. {}
  288. 你上一次给出的错误SQL如下:
  289. {}
  290. 后台报错如下:
  291. {}
  292. 请纠正SQL中的错误再写一遍,且只要SQL,不要有其他说明及文字。
  293. """.format(
  294. index_name(tenant_id),
  295. "\n".join([f"{k}: {v}" for k, v in field_map.items()]),
  296. question, sql, tbl["error"]
  297. )
  298. tbl, sql = get_table()
  299. chat_logger.info("TRY it again: {}".format(sql))
  300. chat_logger.info("GET table: {}".format(tbl))
  301. print(tbl)
  302. if tbl.get("error") or len(tbl["rows"]) == 0:
  303. return None
  304. docid_idx = set([ii for ii, c in enumerate(
  305. tbl["columns"]) if c["name"] == "doc_id"])
  306. docnm_idx = set([ii for ii, c in enumerate(
  307. tbl["columns"]) if c["name"] == "docnm_kwd"])
  308. clmn_idx = [ii for ii in range(
  309. len(tbl["columns"])) if ii not in (docid_idx | docnm_idx)]
  310. # compose markdown table
  311. clmns = "|" + "|".join([re.sub(r"(/.*|([^()]+))", "", field_map.get(tbl["columns"][i]["name"],
  312. tbl["columns"][i]["name"])) for i in clmn_idx]) + ("|Source|" if docid_idx and docid_idx else "|")
  313. line = "|" + "|".join(["------" for _ in range(len(clmn_idx))]) + \
  314. ("|------|" if docid_idx and docid_idx else "")
  315. rows = ["|" +
  316. "|".join([rmSpace(str(r[i])) for i in clmn_idx]).replace("None", " ") +
  317. "|" for r in tbl["rows"]]
  318. if not docid_idx or not docnm_idx:
  319. chat_logger.warning("SQL missing field: " + sql)
  320. return "\n".join([clmns, line, "\n".join(rows)]), []
  321. rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
  322. rows = re.sub(r"T[0-9]{2}:[0-9]{2}:[0-9]{2}(\.[0-9]+Z)?\|", "|", rows)
  323. docid_idx = list(docid_idx)[0]
  324. docnm_idx = list(docnm_idx)[0]
  325. doc_aggs = {}
  326. for r in tbl["rows"]:
  327. if r[docid_idx] not in doc_aggs:
  328. doc_aggs[r[docid_idx]] = {"doc_name": r[docnm_idx], "count": 0}
  329. doc_aggs[r[docid_idx]]["count"] += 1
  330. return {
  331. "answer": "\n".join([clmns, line, rows]),
  332. "reference": {"chunks": [{"doc_id": r[docid_idx], "docnm_kwd": r[docnm_idx]} for r in tbl["rows"]],
  333. "doc_aggs": [{"doc_id": did, "doc_name": d["doc_name"], "count": d["count"]} for did, d in doc_aggs.items()]}
  334. }