| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import logging
- import re
- from collections import defaultdict, Counter
- from copy import deepcopy
- from typing import Callable
- import trio
-
- from graphrag.general.graph_prompt import SUMMARIZE_DESCRIPTIONS_PROMPT
- from graphrag.utils import get_llm_cache, set_llm_cache, handle_single_entity_extraction, \
- handle_single_relationship_extraction, split_string_by_multi_markers, flat_uniq_list, chat_limiter
- from rag.llm.chat_model import Base as CompletionLLM
- from rag.prompts import message_fit_in
- from rag.utils import truncate
-
- GRAPH_FIELD_SEP = "<SEP>"
- DEFAULT_ENTITY_TYPES = ["organization", "person", "geo", "event", "category"]
- ENTITY_EXTRACTION_MAX_GLEANINGS = 2
-
-
- class Extractor:
- _llm: CompletionLLM
-
- def __init__(
- self,
- llm_invoker: CompletionLLM,
- language: str | None = "English",
- entity_types: list[str] | None = None,
- get_entity: Callable | None = None,
- set_entity: Callable | None = None,
- get_relation: Callable | None = None,
- set_relation: Callable | None = None,
- ):
- self._llm = llm_invoker
- self._language = language
- self._entity_types = entity_types or DEFAULT_ENTITY_TYPES
- self._get_entity_ = get_entity
- self._set_entity_ = set_entity
- self._get_relation_ = get_relation
- self._set_relation_ = set_relation
-
- def _chat(self, system, history, gen_conf):
- hist = deepcopy(history)
- conf = deepcopy(gen_conf)
- response = get_llm_cache(self._llm.llm_name, system, hist, conf)
- if response:
- return response
- _, system_msg = message_fit_in([{"role": "system", "content": system}], int(self._llm.max_length * 0.92))
- response = self._llm.chat(system_msg[0]["content"], hist, conf)
- response = re.sub(r"<think>.*</think>", "", response, flags=re.DOTALL)
- if response.find("**ERROR**") >= 0:
- raise Exception(response)
- set_llm_cache(self._llm.llm_name, system, response, history, gen_conf)
- return response
-
- def _entities_and_relations(self, chunk_key: str, records: list, tuple_delimiter: str):
- maybe_nodes = defaultdict(list)
- maybe_edges = defaultdict(list)
- ent_types = [t.lower() for t in self._entity_types]
- for record in records:
- record_attributes = split_string_by_multi_markers(
- record, [tuple_delimiter]
- )
-
- if_entities = handle_single_entity_extraction(
- record_attributes, chunk_key
- )
- if if_entities is not None and if_entities.get("entity_type", "unknown").lower() in ent_types:
- maybe_nodes[if_entities["entity_name"]].append(if_entities)
- continue
-
- if_relation = handle_single_relationship_extraction(
- record_attributes, chunk_key
- )
- if if_relation is not None:
- maybe_edges[(if_relation["src_id"], if_relation["tgt_id"])].append(
- if_relation
- )
- return dict(maybe_nodes), dict(maybe_edges)
-
- async def __call__(
- self, doc_id: str, chunks: list[str],
- callback: Callable | None = None
- ):
-
- self.callback = callback
- start_ts = trio.current_time()
- out_results = []
- async with trio.open_nursery() as nursery:
- for i, ck in enumerate(chunks):
- ck = truncate(ck, int(self._llm.max_length*0.8))
- nursery.start_soon(lambda: self._process_single_content((doc_id, ck), i, len(chunks), out_results))
-
- maybe_nodes = defaultdict(list)
- maybe_edges = defaultdict(list)
- sum_token_count = 0
- for m_nodes, m_edges, token_count in out_results:
- for k, v in m_nodes.items():
- maybe_nodes[k].extend(v)
- for k, v in m_edges.items():
- maybe_edges[tuple(sorted(k))].extend(v)
- sum_token_count += token_count
- now = trio.current_time()
- if callback:
- callback(msg = f"Entities and relationships extraction done, {len(maybe_nodes)} nodes, {len(maybe_edges)} edges, {sum_token_count} tokens, {now-start_ts:.2f}s.")
- start_ts = now
- logging.info("Entities merging...")
- all_entities_data = []
- async with trio.open_nursery() as nursery:
- for en_nm, ents in maybe_nodes.items():
- nursery.start_soon(lambda: self._merge_nodes(en_nm, ents, all_entities_data))
- now = trio.current_time()
- if callback:
- callback(msg = f"Entities merging done, {now-start_ts:.2f}s.")
-
- start_ts = now
- logging.info("Relationships merging...")
- all_relationships_data = []
- async with trio.open_nursery() as nursery:
- for (src, tgt), rels in maybe_edges.items():
- nursery.start_soon(lambda: self._merge_edges(src, tgt, rels, all_relationships_data))
- now = trio.current_time()
- if callback:
- callback(msg = f"Relationships merging done, {now-start_ts:.2f}s.")
-
- if not len(all_entities_data) and not len(all_relationships_data):
- logging.warning(
- "Didn't extract any entities and relationships, maybe your LLM is not working"
- )
-
- if not len(all_entities_data):
- logging.warning("Didn't extract any entities")
- if not len(all_relationships_data):
- logging.warning("Didn't extract any relationships")
-
- return all_entities_data, all_relationships_data
-
- async def _merge_nodes(self, entity_name: str, entities: list[dict], all_relationships_data):
- if not entities:
- return
- already_entity_types = []
- already_source_ids = []
- already_description = []
-
- already_node = self._get_entity_(entity_name)
- if already_node:
- already_entity_types.append(already_node["entity_type"])
- already_source_ids.extend(already_node["source_id"])
- already_description.append(already_node["description"])
-
- entity_type = sorted(
- Counter(
- [dp["entity_type"] for dp in entities] + already_entity_types
- ).items(),
- key=lambda x: x[1],
- reverse=True,
- )[0][0]
- description = GRAPH_FIELD_SEP.join(
- sorted(set([dp["description"] for dp in entities] + already_description))
- )
- already_source_ids = flat_uniq_list(entities, "source_id")
- description = await self._handle_entity_relation_summary(entity_name, description)
- node_data = dict(
- entity_type=entity_type,
- description=description,
- source_id=already_source_ids,
- )
- node_data["entity_name"] = entity_name
- self._set_entity_(entity_name, node_data)
- all_relationships_data.append(node_data)
-
- async def _merge_edges(
- self,
- src_id: str,
- tgt_id: str,
- edges_data: list[dict],
- all_relationships_data=None
- ):
- if not edges_data:
- return
- already_weights = []
- already_source_ids = []
- already_description = []
- already_keywords = []
-
- relation = self._get_relation_(src_id, tgt_id)
- if relation:
- already_weights = [relation["weight"]]
- already_source_ids = relation["source_id"]
- already_description = [relation["description"]]
- already_keywords = relation["keywords"]
-
- weight = sum([dp["weight"] for dp in edges_data] + already_weights)
- description = GRAPH_FIELD_SEP.join(
- sorted(set([dp["description"] for dp in edges_data] + already_description))
- )
- keywords = flat_uniq_list(edges_data, "keywords") + already_keywords
- source_id = flat_uniq_list(edges_data, "source_id") + already_source_ids
-
- for need_insert_id in [src_id, tgt_id]:
- if self._get_entity_(need_insert_id):
- continue
- self._set_entity_(need_insert_id, {
- "source_id": source_id,
- "description": description,
- "entity_type": 'UNKNOWN'
- })
- description = await self._handle_entity_relation_summary(
- f"({src_id}, {tgt_id})", description
- )
- edge_data = dict(
- src_id=src_id,
- tgt_id=tgt_id,
- description=description,
- keywords=keywords,
- weight=weight,
- source_id=source_id
- )
- self._set_relation_(src_id, tgt_id, edge_data)
- if all_relationships_data is not None:
- all_relationships_data.append(edge_data)
-
- async def _handle_entity_relation_summary(
- self,
- entity_or_relation_name: str,
- description: str
- ) -> str:
- summary_max_tokens = 512
- use_description = truncate(description, summary_max_tokens)
- description_list=use_description.split(GRAPH_FIELD_SEP),
- if len(description_list) <= 12:
- return use_description
- prompt_template = SUMMARIZE_DESCRIPTIONS_PROMPT
- context_base = dict(
- entity_name=entity_or_relation_name,
- description_list=description_list,
- language=self._language,
- )
- use_prompt = prompt_template.format(**context_base)
- logging.info(f"Trigger summary: {entity_or_relation_name}")
- async with chat_limiter:
- summary = await trio.to_thread.run_sync(lambda: self._chat(use_prompt, [{"role": "user", "content": "Output: "}], {"temperature": 0.8}))
- return summary
|