You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

search.py 15KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395
  1. # -*- coding: utf-8 -*-
  2. import json
  3. import re
  4. from copy import deepcopy
  5. from elasticsearch_dsl import Q, Search
  6. from typing import List, Optional, Dict, Union
  7. from dataclasses import dataclass
  8. from rag.settings import es_logger
  9. from rag.utils import rmSpace
  10. from rag.nlp import huqie, query
  11. import numpy as np
  12. def index_name(uid): return f"ragflow_{uid}"
  13. class Dealer:
  14. def __init__(self, es):
  15. self.qryr = query.EsQueryer(es)
  16. self.qryr.flds = [
  17. "title_tks^10",
  18. "title_sm_tks^5",
  19. "important_kwd^30",
  20. "important_tks^20",
  21. "content_ltks^2",
  22. "content_sm_ltks"]
  23. self.es = es
  24. @dataclass
  25. class SearchResult:
  26. total: int
  27. ids: List[str]
  28. query_vector: List[float] = None
  29. field: Optional[Dict] = None
  30. highlight: Optional[Dict] = None
  31. aggregation: Union[List, Dict, None] = None
  32. keywords: Optional[List[str]] = None
  33. group_docs: List[List] = None
  34. def _vector(self, txt, emb_mdl, sim=0.8, topk=10):
  35. qv, c = emb_mdl.encode_queries(txt)
  36. return {
  37. "field": "q_%d_vec" % len(qv),
  38. "k": topk,
  39. "similarity": sim,
  40. "num_candidates": topk * 2,
  41. "query_vector": [float(v) for v in qv]
  42. }
  43. def search(self, req, idxnm, emb_mdl=None):
  44. qst = req.get("question", "")
  45. bqry, keywords = self.qryr.question(qst)
  46. if req.get("kb_ids"):
  47. bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
  48. if req.get("doc_ids"):
  49. bqry.filter.append(Q("terms", doc_id=req["doc_ids"]))
  50. if "available_int" in req:
  51. if req["available_int"] == 0:
  52. bqry.filter.append(Q("range", available_int={"lt": 1}))
  53. else:
  54. bqry.filter.append(
  55. Q("bool", must_not=Q("range", available_int={"lt": 1})))
  56. bqry.boost = 0.05
  57. s = Search()
  58. pg = int(req.get("page", 1)) - 1
  59. ps = int(req.get("size", 1000))
  60. topk = int(req.get("topk", 1024))
  61. src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id", "img_id",
  62. "image_id", "doc_id", "q_512_vec", "q_768_vec", "position_int",
  63. "q_1024_vec", "q_1536_vec", "available_int", "content_with_weight"])
  64. s = s.query(bqry)[pg * ps:(pg + 1) * ps]
  65. s = s.highlight("content_ltks")
  66. s = s.highlight("title_ltks")
  67. if not qst:
  68. if not req.get("sort"):
  69. s = s.sort(
  70. {"create_time": {"order": "desc", "unmapped_type": "date"}},
  71. {"create_timestamp_flt": {
  72. "order": "desc", "unmapped_type": "float"}}
  73. )
  74. else:
  75. s = s.sort(
  76. {"page_num_int": {"order": "asc", "unmapped_type": "float",
  77. "mode": "avg", "numeric_type": "double"}},
  78. {"top_int": {"order": "asc", "unmapped_type": "float",
  79. "mode": "avg", "numeric_type": "double"}},
  80. {"create_time": {"order": "desc", "unmapped_type": "date"}},
  81. {"create_timestamp_flt": {
  82. "order": "desc", "unmapped_type": "float"}}
  83. )
  84. if qst:
  85. s = s.highlight_options(
  86. fragment_size=120,
  87. number_of_fragments=5,
  88. boundary_scanner_locale="zh-CN",
  89. boundary_scanner="SENTENCE",
  90. boundary_chars=",./;:\\!(),。?:!……()——、"
  91. )
  92. s = s.to_dict()
  93. q_vec = []
  94. if req.get("vector"):
  95. assert emb_mdl, "No embedding model selected"
  96. s["knn"] = self._vector(
  97. qst, emb_mdl, req.get(
  98. "similarity", 0.1), topk)
  99. s["knn"]["filter"] = bqry.to_dict()
  100. if "highlight" in s:
  101. del s["highlight"]
  102. q_vec = s["knn"]["query_vector"]
  103. es_logger.info("【Q】: {}".format(json.dumps(s)))
  104. res = self.es.search(deepcopy(s), idxnm=idxnm, timeout="600s", src=src)
  105. es_logger.info("TOTAL: {}".format(self.es.getTotal(res)))
  106. if self.es.getTotal(res) == 0 and "knn" in s:
  107. bqry, _ = self.qryr.question(qst, min_match="10%")
  108. if req.get("kb_ids"):
  109. bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
  110. s["query"] = bqry.to_dict()
  111. s["knn"]["filter"] = bqry.to_dict()
  112. s["knn"]["similarity"] = 0.17
  113. res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)
  114. es_logger.info("【Q】: {}".format(json.dumps(s)))
  115. kwds = set([])
  116. for k in keywords:
  117. kwds.add(k)
  118. for kk in huqie.qieqie(k).split(" "):
  119. if len(kk) < 2:
  120. continue
  121. if kk in kwds:
  122. continue
  123. kwds.add(kk)
  124. aggs = self.getAggregation(res, "docnm_kwd")
  125. return self.SearchResult(
  126. total=self.es.getTotal(res),
  127. ids=self.es.getDocIds(res),
  128. query_vector=q_vec,
  129. aggregation=aggs,
  130. highlight=self.getHighlight(res),
  131. field=self.getFields(res, src),
  132. keywords=list(kwds)
  133. )
  134. def getAggregation(self, res, g):
  135. if not "aggregations" in res or "aggs_" + g not in res["aggregations"]:
  136. return
  137. bkts = res["aggregations"]["aggs_" + g]["buckets"]
  138. return [(b["key"], b["doc_count"]) for b in bkts]
  139. def getHighlight(self, res):
  140. def rmspace(line):
  141. eng = set(list("qwertyuioplkjhgfdsazxcvbnm"))
  142. r = []
  143. for t in line.split(" "):
  144. if not t:
  145. continue
  146. if len(r) > 0 and len(
  147. t) > 0 and r[-1][-1] in eng and t[0] in eng:
  148. r.append(" ")
  149. r.append(t)
  150. r = "".join(r)
  151. return r
  152. ans = {}
  153. for d in res["hits"]["hits"]:
  154. hlts = d.get("highlight")
  155. if not hlts:
  156. continue
  157. ans[d["_id"]] = "".join([a for a in list(hlts.items())[0][1]])
  158. return ans
  159. def getFields(self, sres, flds):
  160. res = {}
  161. if not flds:
  162. return {}
  163. for d in self.es.getSource(sres):
  164. m = {n: d.get(n) for n in flds if d.get(n) is not None}
  165. for n, v in m.items():
  166. if isinstance(v, type([])):
  167. m[n] = "\t".join([str(vv) if not isinstance(
  168. vv, list) else "\t".join([str(vvv) for vvv in vv]) for vv in v])
  169. continue
  170. if not isinstance(v, type("")):
  171. m[n] = str(m[n])
  172. if n.find("tks") > 0:
  173. m[n] = rmSpace(m[n])
  174. if m:
  175. res[d["id"]] = m
  176. return res
  177. @staticmethod
  178. def trans2floats(txt):
  179. return [float(t) for t in txt.split("\t")]
  180. def insert_citations(self, answer, chunks, chunk_v,
  181. embd_mdl, tkweight=0.1, vtweight=0.9):
  182. assert len(chunks) == len(chunk_v)
  183. pieces = re.split(r"(```)", answer)
  184. if len(pieces) >= 3:
  185. i = 0
  186. pieces_ = []
  187. while i < len(pieces):
  188. if pieces[i] == "```":
  189. st = i
  190. i += 1
  191. while i < len(pieces) and pieces[i] != "```":
  192. i += 1
  193. if i < len(pieces):
  194. i += 1
  195. pieces_.append("".join(pieces[st: i]) + "\n")
  196. else:
  197. pieces_.extend(
  198. re.split(
  199. r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])",
  200. pieces[i]))
  201. i += 1
  202. pieces = pieces_
  203. else:
  204. pieces = re.split(r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])", answer)
  205. for i in range(1, len(pieces)):
  206. if re.match(r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])", pieces[i]):
  207. pieces[i - 1] += pieces[i][0]
  208. pieces[i] = pieces[i][1:]
  209. idx = []
  210. pieces_ = []
  211. for i, t in enumerate(pieces):
  212. if len(t) < 5:
  213. continue
  214. idx.append(i)
  215. pieces_.append(t)
  216. es_logger.info("{} => {}".format(answer, pieces_))
  217. if not pieces_:
  218. return answer
  219. ans_v, _ = embd_mdl.encode(pieces_)
  220. assert len(ans_v[0]) == len(chunk_v[0]), "The dimension of query and chunk do not match: {} vs. {}".format(
  221. len(ans_v[0]), len(chunk_v[0]))
  222. chunks_tks = [huqie.qie(self.qryr.rmWWW(ck)).split(" ")
  223. for ck in chunks]
  224. cites = {}
  225. thr = 0.63
  226. while thr>0.3 and len(cites.keys()) == 0 and pieces_ and chunks_tks:
  227. for i, a in enumerate(pieces_):
  228. sim, tksim, vtsim = self.qryr.hybrid_similarity(ans_v[i],
  229. chunk_v,
  230. huqie.qie(
  231. self.qryr.rmWWW(pieces_[i])).split(" "),
  232. chunks_tks,
  233. tkweight, vtweight)
  234. mx = np.max(sim) * 0.99
  235. es_logger.info("{} SIM: {}".format(pieces_[i], mx))
  236. if mx < thr:
  237. continue
  238. cites[idx[i]] = list(
  239. set([str(ii) for ii in range(len(chunk_v)) if sim[ii] > mx]))[:4]
  240. thr *= 0.8
  241. res = ""
  242. seted = set([])
  243. for i, p in enumerate(pieces):
  244. res += p
  245. if i not in idx:
  246. continue
  247. if i not in cites:
  248. continue
  249. for c in cites[i]:
  250. assert int(c) < len(chunk_v)
  251. for c in cites[i]:
  252. if c in seted:
  253. continue
  254. res += f" ##{c}$$"
  255. seted.add(c)
  256. return res, seted
  257. def rerank(self, sres, query, tkweight=0.3,
  258. vtweight=0.7, cfield="content_ltks"):
  259. _, keywords = self.qryr.question(query)
  260. ins_embd = [
  261. Dealer.trans2floats(
  262. sres.field[i].get("q_%d_vec" % len(sres.query_vector), "\t".join(["0"] * len(sres.query_vector)))) for i in sres.ids]
  263. if not ins_embd:
  264. return [], [], []
  265. ins_tw = [sres.field[i][cfield].split(" ")
  266. for i in sres.ids]
  267. sim, tksim, vtsim = self.qryr.hybrid_similarity(sres.query_vector,
  268. ins_embd,
  269. keywords,
  270. ins_tw, tkweight, vtweight)
  271. return sim, tksim, vtsim
  272. def hybrid_similarity(self, ans_embd, ins_embd, ans, inst):
  273. return self.qryr.hybrid_similarity(ans_embd,
  274. ins_embd,
  275. huqie.qie(ans).split(" "),
  276. huqie.qie(inst).split(" "))
  277. def retrieval(self, question, embd_mdl, tenant_id, kb_ids, page, page_size, similarity_threshold=0.2,
  278. vector_similarity_weight=0.3, top=1024, doc_ids=None, aggs=True):
  279. ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
  280. if not question:
  281. return ranks
  282. req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "size": page_size,
  283. "question": question, "vector": True, "topk": top,
  284. "similarity": similarity_threshold}
  285. sres = self.search(req, index_name(tenant_id), embd_mdl)
  286. sim, tsim, vsim = self.rerank(
  287. sres, question, 1 - vector_similarity_weight, vector_similarity_weight)
  288. idx = np.argsort(sim * -1)
  289. dim = len(sres.query_vector)
  290. start_idx = (page - 1) * page_size
  291. for i in idx:
  292. if sim[i] < similarity_threshold:
  293. break
  294. ranks["total"] += 1
  295. start_idx -= 1
  296. if start_idx >= 0:
  297. continue
  298. if len(ranks["chunks"]) >= page_size:
  299. if aggs:
  300. continue
  301. break
  302. id = sres.ids[i]
  303. dnm = sres.field[id]["docnm_kwd"]
  304. did = sres.field[id]["doc_id"]
  305. d = {
  306. "chunk_id": id,
  307. "content_ltks": sres.field[id]["content_ltks"],
  308. "content_with_weight": sres.field[id]["content_with_weight"],
  309. "doc_id": sres.field[id]["doc_id"],
  310. "docnm_kwd": dnm,
  311. "kb_id": sres.field[id]["kb_id"],
  312. "important_kwd": sres.field[id].get("important_kwd", []),
  313. "img_id": sres.field[id].get("img_id", ""),
  314. "similarity": sim[i],
  315. "vector_similarity": vsim[i],
  316. "term_similarity": tsim[i],
  317. "vector": self.trans2floats(sres.field[id].get("q_%d_vec" % dim, "\t".join(["0"] * dim))),
  318. "positions": sres.field[id].get("position_int", "").split("\t")
  319. }
  320. if len(d["positions"]) % 5 == 0:
  321. poss = []
  322. for i in range(0, len(d["positions"]), 5):
  323. poss.append([float(d["positions"][i]), float(d["positions"][i + 1]), float(d["positions"][i + 2]),
  324. float(d["positions"][i + 3]), float(d["positions"][i + 4])])
  325. d["positions"] = poss
  326. ranks["chunks"].append(d)
  327. if dnm not in ranks["doc_aggs"]:
  328. ranks["doc_aggs"][dnm] = {"doc_id": did, "count": 0}
  329. ranks["doc_aggs"][dnm]["count"] += 1
  330. ranks["doc_aggs"] = [{"doc_name": k,
  331. "doc_id": v["doc_id"],
  332. "count": v["count"]} for k,
  333. v in sorted(ranks["doc_aggs"].items(),
  334. key=lambda x:x[1]["count"] * -1)]
  335. return ranks
  336. def sql_retrieval(self, sql, fetch_size=128, format="json"):
  337. from api.settings import chat_logger
  338. sql = re.sub(r"[ ]+", " ", sql)
  339. sql = sql.replace("%", "")
  340. es_logger.info(f"Get es sql: {sql}")
  341. replaces = []
  342. for r in re.finditer(r" ([a-z_]+_l?tks)( like | ?= ?)'([^']+)'", sql):
  343. fld, v = r.group(1), r.group(3)
  344. match = " MATCH({}, '{}', 'operator=OR;minimum_should_match=30%') ".format(
  345. fld, huqie.qieqie(huqie.qie(v)))
  346. replaces.append(
  347. ("{}{}'{}'".format(
  348. r.group(1),
  349. r.group(2),
  350. r.group(3)),
  351. match))
  352. for p, r in replaces:
  353. sql = sql.replace(p, r, 1)
  354. chat_logger.info(f"To es: {sql}")
  355. try:
  356. tbl = self.es.sql(sql, fetch_size, format)
  357. return tbl
  358. except Exception as e:
  359. chat_logger.error(f"SQL failure: {sql} =>" + str(e))
  360. return {"error": str(e)}