You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

assistant.py 13KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. from flask import request
  17. from api.db import StatusEnum
  18. from api.db.services.dialog_service import DialogService
  19. from api.db.services.document_service import DocumentService
  20. from api.db.services.knowledgebase_service import KnowledgebaseService
  21. from api.db.services.user_service import TenantService
  22. from api.settings import RetCode
  23. from api.utils import get_uuid
  24. from api.utils.api_utils import get_data_error_result, token_required
  25. from api.utils.api_utils import get_json_result
  26. @manager.route('/save', methods=['POST'])
  27. @token_required
  28. def save(tenant_id):
  29. req = request.json
  30. id = req.get("id")
  31. # dataset
  32. if req.get("knowledgebases") == []:
  33. return get_data_error_result(retmsg="knowledgebases can not be empty list")
  34. kb_list = []
  35. if req.get("knowledgebases"):
  36. for kb in req.get("knowledgebases"):
  37. if not kb["id"]:
  38. return get_data_error_result(retmsg="knowledgebase needs id")
  39. if not KnowledgebaseService.query(id=kb["id"], tenant_id=tenant_id):
  40. return get_data_error_result(retmsg="you do not own the knowledgebase")
  41. if not DocumentService.query(kb_id=kb["id"]):
  42. return get_data_error_result(retmsg="There is a invalid knowledgebase")
  43. kb_list.append(kb["id"])
  44. req["kb_ids"] = kb_list
  45. # llm
  46. llm = req.get("llm")
  47. if llm:
  48. if "model_name" in llm:
  49. req["llm_id"] = llm.pop("model_name")
  50. req["llm_setting"] = req.pop("llm")
  51. e, tenant = TenantService.get_by_id(tenant_id)
  52. if not e:
  53. return get_data_error_result(retmsg="Tenant not found!")
  54. # prompt
  55. prompt = req.get("prompt")
  56. key_mapping = {"parameters": "variables",
  57. "prologue": "opener",
  58. "quote": "show_quote",
  59. "system": "prompt",
  60. "rerank_id": "rerank_model",
  61. "vector_similarity_weight": "keywords_similarity_weight"}
  62. key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
  63. if prompt:
  64. for new_key, old_key in key_mapping.items():
  65. if old_key in prompt:
  66. prompt[new_key] = prompt.pop(old_key)
  67. for key in key_list:
  68. if key in prompt:
  69. req[key] = prompt.pop(key)
  70. req["prompt_config"] = req.pop("prompt")
  71. # create
  72. if not id:
  73. # dataset
  74. if not kb_list:
  75. return get_data_error_result(retmsg="knowledgebase is required!")
  76. # init
  77. req["id"] = get_uuid()
  78. req["description"] = req.get("description", "A helpful Assistant")
  79. req["icon"] = req.get("avatar", "")
  80. req["top_n"] = req.get("top_n", 6)
  81. req["top_k"] = req.get("top_k", 1024)
  82. req["rerank_id"] = req.get("rerank_id", "")
  83. req["llm_id"] = req.get("llm_id", tenant.llm_id)
  84. if not req.get("name"):
  85. return get_data_error_result(retmsg="name is required.")
  86. if DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value):
  87. return get_data_error_result(retmsg="Duplicated assistant name in creating dataset.")
  88. # tenant_id
  89. if req.get("tenant_id"):
  90. return get_data_error_result(retmsg="tenant_id must not be provided.")
  91. req["tenant_id"] = tenant_id
  92. # prompt more parameter
  93. default_prompt = {
  94. "system": """你是一个智能助手,请总结知识库的内容来回答问题,请列举知识库中的数据详细回答。当所有知识库内容都与问题无关时,你的回答必须包括“知识库中未找到您要的答案!”这句话。回答需要考虑聊天历史。
  95. 以下是知识库:
  96. {knowledge}
  97. 以上是知识库。""",
  98. "prologue": "您好,我是您的助手小樱,长得可爱又善良,can I help you?",
  99. "parameters": [
  100. {"key": "knowledge", "optional": False}
  101. ],
  102. "empty_response": "Sorry! 知识库中未找到相关内容!"
  103. }
  104. key_list_2 = ["system", "prologue", "parameters", "empty_response"]
  105. if "prompt_config" not in req:
  106. req['prompt_config'] = {}
  107. for key in key_list_2:
  108. temp = req['prompt_config'].get(key)
  109. if not temp:
  110. req['prompt_config'][key] = default_prompt[key]
  111. for p in req['prompt_config']["parameters"]:
  112. if p["optional"]:
  113. continue
  114. if req['prompt_config']["system"].find("{%s}" % p["key"]) < 0:
  115. return get_data_error_result(
  116. retmsg="Parameter '{}' is not used".format(p["key"]))
  117. # save
  118. if not DialogService.save(**req):
  119. return get_data_error_result(retmsg="Fail to new an assistant!")
  120. # response
  121. e, res = DialogService.get_by_id(req["id"])
  122. if not e:
  123. return get_data_error_result(retmsg="Fail to new an assistant!")
  124. res = res.to_json()
  125. renamed_dict = {}
  126. for key, value in res["prompt_config"].items():
  127. new_key = key_mapping.get(key, key)
  128. renamed_dict[new_key] = value
  129. res["prompt"] = renamed_dict
  130. del res["prompt_config"]
  131. new_dict = {"similarity_threshold": res["similarity_threshold"],
  132. "keywords_similarity_weight": res["vector_similarity_weight"],
  133. "top_n": res["top_n"],
  134. "rerank_model": res['rerank_id']}
  135. res["prompt"].update(new_dict)
  136. for key in key_list:
  137. del res[key]
  138. res["llm"] = res.pop("llm_setting")
  139. res["llm"]["model_name"] = res.pop("llm_id")
  140. del res["kb_ids"]
  141. res["knowledgebases"] = req["knowledgebases"]
  142. res["avatar"] = res.pop("icon")
  143. return get_json_result(data=res)
  144. else:
  145. # authorization
  146. if not DialogService.query(tenant_id=tenant_id, id=req["id"], status=StatusEnum.VALID.value):
  147. return get_json_result(data=False, retmsg='You do not own the assistant', retcode=RetCode.OPERATING_ERROR)
  148. # prompt
  149. e, res = DialogService.get_by_id(req["id"])
  150. res = res.to_json()
  151. if "name" in req:
  152. if not req.get("name"):
  153. return get_data_error_result(retmsg="name is not empty.")
  154. if req["name"].lower() != res["name"].lower() \
  155. and len(DialogService.query(name=req["name"], tenant_id=tenant_id,status=StatusEnum.VALID.value)) > 0:
  156. return get_data_error_result(retmsg="Duplicated knowledgebase name in updating dataset.")
  157. if "prompt_config" in req:
  158. res["prompt_config"].update(req["prompt_config"])
  159. for p in res["prompt_config"]["parameters"]:
  160. if p["optional"]:
  161. continue
  162. if res["prompt_config"]["system"].find("{%s}" % p["key"]) < 0:
  163. return get_data_error_result(retmsg="Parameter '{}' is not used".format(p["key"]))
  164. if "llm_setting" in req:
  165. res["llm_setting"].update(req["llm_setting"])
  166. req["prompt_config"] = res["prompt_config"]
  167. req["llm_setting"] = res["llm_setting"]
  168. # avatar
  169. if "avatar" in req:
  170. req["icon"] = req.pop("avatar")
  171. assistant_id = req.pop("id")
  172. if "knowledgebases" in req:
  173. req.pop("knowledgebases")
  174. if not DialogService.update_by_id(assistant_id, req):
  175. return get_data_error_result(retmsg="Assistant not found!")
  176. return get_json_result(data=True)
  177. @manager.route('/delete', methods=['DELETE'])
  178. @token_required
  179. def delete(tenant_id):
  180. req = request.args
  181. if "id" not in req:
  182. return get_data_error_result(retmsg="id is required")
  183. id = req['id']
  184. if not DialogService.query(tenant_id=tenant_id, id=id,status=StatusEnum.VALID.value):
  185. return get_json_result(data=False, retmsg='you do not own the assistant.', retcode=RetCode.OPERATING_ERROR)
  186. temp_dict = {"status": StatusEnum.INVALID.value}
  187. DialogService.update_by_id(req["id"], temp_dict)
  188. return get_json_result(data=True)
  189. @manager.route('/get', methods=['GET'])
  190. @token_required
  191. def get(tenant_id):
  192. req = request.args
  193. if "id" in req:
  194. id = req["id"]
  195. ass = DialogService.query(tenant_id=tenant_id, id=id,status=StatusEnum.VALID.value)
  196. if not ass:
  197. return get_json_result(data=False, retmsg='You do not own the assistant.', retcode=RetCode.OPERATING_ERROR)
  198. if "name" in req:
  199. name = req["name"]
  200. if ass[0].name != name:
  201. return get_json_result(data=False, retmsg='name does not match id.', retcode=RetCode.OPERATING_ERROR)
  202. res=ass[0].to_json()
  203. else:
  204. if "name" in req:
  205. name = req["name"]
  206. ass = DialogService.query(name=name, tenant_id=tenant_id,status=StatusEnum.VALID.value)
  207. if not ass:
  208. return get_json_result(data=False, retmsg='You do not own the dataset.',retcode=RetCode.OPERATING_ERROR)
  209. res=ass[0].to_json()
  210. else:
  211. return get_data_error_result(retmsg="At least one of `id` or `name` must be provided.")
  212. renamed_dict = {}
  213. key_mapping = {"parameters": "variables",
  214. "prologue": "opener",
  215. "quote": "show_quote",
  216. "system": "prompt",
  217. "rerank_id": "rerank_model",
  218. "vector_similarity_weight": "keywords_similarity_weight"}
  219. key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
  220. for key, value in res["prompt_config"].items():
  221. new_key = key_mapping.get(key, key)
  222. renamed_dict[new_key] = value
  223. res["prompt"] = renamed_dict
  224. del res["prompt_config"]
  225. new_dict = {"similarity_threshold": res["similarity_threshold"],
  226. "keywords_similarity_weight": res["vector_similarity_weight"],
  227. "top_n": res["top_n"],
  228. "rerank_model": res['rerank_id']}
  229. res["prompt"].update(new_dict)
  230. for key in key_list:
  231. del res[key]
  232. res["llm"] = res.pop("llm_setting")
  233. res["llm"]["model_name"] = res.pop("llm_id")
  234. kb_list = []
  235. for kb_id in res["kb_ids"]:
  236. kb = KnowledgebaseService.query(id=kb_id)
  237. kb_list.append(kb[0].to_json())
  238. del res["kb_ids"]
  239. res["knowledgebases"] = kb_list
  240. res["avatar"] = res.pop("icon")
  241. return get_json_result(data=res)
  242. @manager.route('/list', methods=['GET'])
  243. @token_required
  244. def list_assistants(tenant_id):
  245. assts = DialogService.query(
  246. tenant_id=tenant_id,
  247. status=StatusEnum.VALID.value,
  248. reverse=True,
  249. order_by=DialogService.model.create_time)
  250. assts = [d.to_dict() for d in assts]
  251. list_assts=[]
  252. renamed_dict = {}
  253. key_mapping = {"parameters": "variables",
  254. "prologue": "opener",
  255. "quote": "show_quote",
  256. "system": "prompt",
  257. "rerank_id": "rerank_model",
  258. "vector_similarity_weight": "keywords_similarity_weight"}
  259. key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
  260. for res in assts:
  261. for key, value in res["prompt_config"].items():
  262. new_key = key_mapping.get(key, key)
  263. renamed_dict[new_key] = value
  264. res["prompt"] = renamed_dict
  265. del res["prompt_config"]
  266. new_dict = {"similarity_threshold": res["similarity_threshold"],
  267. "keywords_similarity_weight": res["vector_similarity_weight"],
  268. "top_n": res["top_n"],
  269. "rerank_model": res['rerank_id']}
  270. res["prompt"].update(new_dict)
  271. for key in key_list:
  272. del res[key]
  273. res["llm"] = res.pop("llm_setting")
  274. res["llm"]["model_name"] = res.pop("llm_id")
  275. kb_list = []
  276. for kb_id in res["kb_ids"]:
  277. kb = KnowledgebaseService.query(id=kb_id)
  278. kb_list.append(kb[0].to_json())
  279. del res["kb_ids"]
  280. res["knowledgebases"] = kb_list
  281. res["avatar"] = res.pop("icon")
  282. list_assts.append(res)
  283. return get_json_result(data=list_assts)