Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

llm_service.py 19KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import logging
  17. import re
  18. from functools import partial
  19. from typing import Generator
  20. from langfuse import Langfuse
  21. from api import settings
  22. from api.db import LLMType
  23. from api.db.db_models import DB, LLM, LLMFactories, TenantLLM
  24. from api.db.services.common_service import CommonService
  25. from api.db.services.langfuse_service import TenantLangfuseService
  26. from api.db.services.user_service import TenantService
  27. from rag.llm import ChatModel, CvModel, EmbeddingModel, RerankModel, Seq2txtModel, TTSModel
  28. class LLMFactoriesService(CommonService):
  29. model = LLMFactories
  30. class LLMService(CommonService):
  31. model = LLM
  32. class TenantLLMService(CommonService):
  33. model = TenantLLM
  34. @classmethod
  35. @DB.connection_context()
  36. def get_api_key(cls, tenant_id, model_name):
  37. mdlnm, fid = TenantLLMService.split_model_name_and_factory(model_name)
  38. if not fid:
  39. objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm)
  40. else:
  41. objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm, llm_factory=fid)
  42. if (not objs) and fid:
  43. if fid == "LocalAI":
  44. mdlnm += "___LocalAI"
  45. elif fid == "HuggingFace":
  46. mdlnm += "___HuggingFace"
  47. elif fid == "OpenAI-API-Compatible":
  48. mdlnm += "___OpenAI-API"
  49. elif fid == "VLLM":
  50. mdlnm += "___VLLM"
  51. objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm, llm_factory=fid)
  52. if not objs:
  53. return
  54. return objs[0]
  55. @classmethod
  56. @DB.connection_context()
  57. def get_my_llms(cls, tenant_id):
  58. fields = [cls.model.llm_factory, LLMFactories.logo, LLMFactories.tags, cls.model.model_type, cls.model.llm_name, cls.model.used_tokens]
  59. objs = cls.model.select(*fields).join(LLMFactories, on=(cls.model.llm_factory == LLMFactories.name)).where(cls.model.tenant_id == tenant_id, ~cls.model.api_key.is_null()).dicts()
  60. return list(objs)
  61. @staticmethod
  62. def split_model_name_and_factory(model_name):
  63. arr = model_name.split("@")
  64. if len(arr) < 2:
  65. return model_name, None
  66. if len(arr) > 2:
  67. return "@".join(arr[0:-1]), arr[-1]
  68. # model name must be xxx@yyy
  69. try:
  70. model_factories = settings.FACTORY_LLM_INFOS
  71. model_providers = set([f["name"] for f in model_factories])
  72. if arr[-1] not in model_providers:
  73. return model_name, None
  74. return arr[0], arr[-1]
  75. except Exception as e:
  76. logging.exception(f"TenantLLMService.split_model_name_and_factory got exception: {e}")
  77. return model_name, None
  78. @classmethod
  79. @DB.connection_context()
  80. def get_model_config(cls, tenant_id, llm_type, llm_name=None):
  81. e, tenant = TenantService.get_by_id(tenant_id)
  82. if not e:
  83. raise LookupError("Tenant not found")
  84. if llm_type == LLMType.EMBEDDING.value:
  85. mdlnm = tenant.embd_id if not llm_name else llm_name
  86. elif llm_type == LLMType.SPEECH2TEXT.value:
  87. mdlnm = tenant.asr_id
  88. elif llm_type == LLMType.IMAGE2TEXT.value:
  89. mdlnm = tenant.img2txt_id if not llm_name else llm_name
  90. elif llm_type == LLMType.CHAT.value:
  91. mdlnm = tenant.llm_id if not llm_name else llm_name
  92. elif llm_type == LLMType.RERANK:
  93. mdlnm = tenant.rerank_id if not llm_name else llm_name
  94. elif llm_type == LLMType.TTS:
  95. mdlnm = tenant.tts_id if not llm_name else llm_name
  96. else:
  97. assert False, "LLM type error"
  98. model_config = cls.get_api_key(tenant_id, mdlnm)
  99. mdlnm, fid = TenantLLMService.split_model_name_and_factory(mdlnm)
  100. if not model_config: # for some cases seems fid mismatch
  101. model_config = cls.get_api_key(tenant_id, mdlnm)
  102. if model_config:
  103. model_config = model_config.to_dict()
  104. llm = LLMService.query(llm_name=mdlnm) if not fid else LLMService.query(llm_name=mdlnm, fid=fid)
  105. if not llm and fid: # for some cases seems fid mismatch
  106. llm = LLMService.query(llm_name=mdlnm)
  107. if llm:
  108. model_config["is_tools"] = llm[0].is_tools
  109. if not model_config:
  110. if llm_type in [LLMType.EMBEDDING, LLMType.RERANK]:
  111. llm = LLMService.query(llm_name=mdlnm) if not fid else LLMService.query(llm_name=mdlnm, fid=fid)
  112. if llm and llm[0].fid in ["Youdao", "FastEmbed", "BAAI"]:
  113. model_config = {"llm_factory": llm[0].fid, "api_key": "", "llm_name": mdlnm, "api_base": ""}
  114. if not model_config:
  115. if mdlnm == "flag-embedding":
  116. model_config = {"llm_factory": "Tongyi-Qianwen", "api_key": "", "llm_name": llm_name, "api_base": ""}
  117. else:
  118. if not mdlnm:
  119. raise LookupError(f"Type of {llm_type} model is not set.")
  120. raise LookupError("Model({}) not authorized".format(mdlnm))
  121. return model_config
  122. @classmethod
  123. @DB.connection_context()
  124. def model_instance(cls, tenant_id, llm_type, llm_name=None, lang="Chinese", **kwargs):
  125. model_config = TenantLLMService.get_model_config(tenant_id, llm_type, llm_name)
  126. kwargs.update({"provider": model_config["llm_factory"]})
  127. if llm_type == LLMType.EMBEDDING.value:
  128. if model_config["llm_factory"] not in EmbeddingModel:
  129. return
  130. return EmbeddingModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
  131. if llm_type == LLMType.RERANK:
  132. if model_config["llm_factory"] not in RerankModel:
  133. return
  134. return RerankModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
  135. if llm_type == LLMType.IMAGE2TEXT.value:
  136. if model_config["llm_factory"] not in CvModel:
  137. return
  138. return CvModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], lang, base_url=model_config["api_base"], **kwargs)
  139. if llm_type == LLMType.CHAT.value:
  140. if model_config["llm_factory"] not in ChatModel:
  141. return
  142. return ChatModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"], **kwargs)
  143. if llm_type == LLMType.SPEECH2TEXT:
  144. if model_config["llm_factory"] not in Seq2txtModel:
  145. return
  146. return Seq2txtModel[model_config["llm_factory"]](key=model_config["api_key"], model_name=model_config["llm_name"], lang=lang, base_url=model_config["api_base"])
  147. if llm_type == LLMType.TTS:
  148. if model_config["llm_factory"] not in TTSModel:
  149. return
  150. return TTSModel[model_config["llm_factory"]](
  151. model_config["api_key"],
  152. model_config["llm_name"],
  153. base_url=model_config["api_base"],
  154. )
  155. @classmethod
  156. @DB.connection_context()
  157. def increase_usage(cls, tenant_id, llm_type, used_tokens, llm_name=None):
  158. e, tenant = TenantService.get_by_id(tenant_id)
  159. if not e:
  160. logging.error(f"Tenant not found: {tenant_id}")
  161. return 0
  162. llm_map = {
  163. LLMType.EMBEDDING.value: tenant.embd_id if not llm_name else llm_name,
  164. LLMType.SPEECH2TEXT.value: tenant.asr_id,
  165. LLMType.IMAGE2TEXT.value: tenant.img2txt_id,
  166. LLMType.CHAT.value: tenant.llm_id if not llm_name else llm_name,
  167. LLMType.RERANK.value: tenant.rerank_id if not llm_name else llm_name,
  168. LLMType.TTS.value: tenant.tts_id if not llm_name else llm_name,
  169. }
  170. mdlnm = llm_map.get(llm_type)
  171. if mdlnm is None:
  172. logging.error(f"LLM type error: {llm_type}")
  173. return 0
  174. llm_name, llm_factory = TenantLLMService.split_model_name_and_factory(mdlnm)
  175. try:
  176. num = (
  177. cls.model.update(used_tokens=cls.model.used_tokens + used_tokens)
  178. .where(cls.model.tenant_id == tenant_id, cls.model.llm_name == llm_name, cls.model.llm_factory == llm_factory if llm_factory else True)
  179. .execute()
  180. )
  181. except Exception:
  182. logging.exception("TenantLLMService.increase_usage got exception,Failed to update used_tokens for tenant_id=%s, llm_name=%s", tenant_id, llm_name)
  183. return 0
  184. return num
  185. @classmethod
  186. @DB.connection_context()
  187. def get_openai_models(cls):
  188. objs = cls.model.select().where((cls.model.llm_factory == "OpenAI"), ~(cls.model.llm_name == "text-embedding-3-small"), ~(cls.model.llm_name == "text-embedding-3-large")).dicts()
  189. return list(objs)
  190. @staticmethod
  191. def llm_id2llm_type(llm_id: str) -> str | None:
  192. llm_id, *_ = TenantLLMService.split_model_name_and_factory(llm_id)
  193. llm_factories = settings.FACTORY_LLM_INFOS
  194. for llm_factory in llm_factories:
  195. for llm in llm_factory["llm"]:
  196. if llm_id == llm["llm_name"]:
  197. return llm["model_type"].split(",")[-1]
  198. for llm in LLMService.query(llm_name=llm_id):
  199. return llm.model_type
  200. llm = TenantLLMService.get_or_none(llm_name=llm_id)
  201. if llm:
  202. return llm.model_type
  203. for llm in TenantLLMService.query(llm_name=llm_id):
  204. return llm.model_type
  205. class LLMBundle:
  206. def __init__(self, tenant_id, llm_type, llm_name=None, lang="Chinese", **kwargs):
  207. self.tenant_id = tenant_id
  208. self.llm_type = llm_type
  209. self.llm_name = llm_name
  210. self.mdl = TenantLLMService.model_instance(tenant_id, llm_type, llm_name, lang=lang, **kwargs)
  211. assert self.mdl, "Can't find model for {}/{}/{}".format(tenant_id, llm_type, llm_name)
  212. model_config = TenantLLMService.get_model_config(tenant_id, llm_type, llm_name)
  213. self.max_length = model_config.get("max_tokens", 8192)
  214. self.is_tools = model_config.get("is_tools", False)
  215. self.verbose_tool_use = kwargs.get("verbose_tool_use")
  216. langfuse_keys = TenantLangfuseService.filter_by_tenant(tenant_id=tenant_id)
  217. self.langfuse = None
  218. if langfuse_keys:
  219. langfuse = Langfuse(public_key=langfuse_keys.public_key, secret_key=langfuse_keys.secret_key, host=langfuse_keys.host)
  220. if langfuse.auth_check():
  221. self.langfuse = langfuse
  222. trace_id = self.langfuse.create_trace_id()
  223. self.trace_context = {"trace_id": trace_id}
  224. def bind_tools(self, toolcall_session, tools):
  225. if not self.is_tools:
  226. logging.warning(f"Model {self.llm_name} does not support tool call, but you have assigned one or more tools to it!")
  227. return
  228. self.mdl.bind_tools(toolcall_session, tools)
  229. def encode(self, texts: list):
  230. if self.langfuse:
  231. generation = self.langfuse.start_generation(trace_context=self.trace_context, name="encode", model=self.llm_name, input={"texts": texts})
  232. embeddings, used_tokens = self.mdl.encode(texts)
  233. llm_name = getattr(self, "llm_name", None)
  234. if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens, llm_name):
  235. logging.error("LLMBundle.encode can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
  236. if self.langfuse:
  237. generation.update(usage_details={"total_tokens": used_tokens})
  238. generation.end()
  239. return embeddings, used_tokens
  240. def encode_queries(self, query: str):
  241. if self.langfuse:
  242. generation = self.langfuse.start_generation(trace_context=self.trace_context, name="encode_queries", model=self.llm_name, input={"query": query})
  243. emd, used_tokens = self.mdl.encode_queries(query)
  244. llm_name = getattr(self, "llm_name", None)
  245. if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens, llm_name):
  246. logging.error("LLMBundle.encode_queries can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
  247. if self.langfuse:
  248. generation.update(usage_details={"total_tokens": used_tokens})
  249. generation.end()
  250. return emd, used_tokens
  251. def similarity(self, query: str, texts: list):
  252. if self.langfuse:
  253. generation = self.langfuse.start_generation(trace_context=self.trace_context, name="similarity", model=self.llm_name, input={"query": query, "texts": texts})
  254. sim, used_tokens = self.mdl.similarity(query, texts)
  255. if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
  256. logging.error("LLMBundle.similarity can't update token usage for {}/RERANK used_tokens: {}".format(self.tenant_id, used_tokens))
  257. if self.langfuse:
  258. generation.update(usage_details={"total_tokens": used_tokens})
  259. generation.end()
  260. return sim, used_tokens
  261. def describe(self, image, max_tokens=300):
  262. if self.langfuse:
  263. generation = self.langfuse.start_generation(trace_context=self.trace_context, name="describe", metadata={"model": self.llm_name})
  264. txt, used_tokens = self.mdl.describe(image)
  265. if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
  266. logging.error("LLMBundle.describe can't update token usage for {}/IMAGE2TEXT used_tokens: {}".format(self.tenant_id, used_tokens))
  267. if self.langfuse:
  268. generation.update(output={"output": txt}, usage_details={"total_tokens": used_tokens})
  269. generation.end()
  270. return txt
  271. def describe_with_prompt(self, image, prompt):
  272. if self.langfuse:
  273. generation = self.language.start_generation(trace_context=self.trace_context, name="describe_with_prompt", metadata={"model": self.llm_name, "prompt": prompt})
  274. txt, used_tokens = self.mdl.describe_with_prompt(image, prompt)
  275. if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
  276. logging.error("LLMBundle.describe can't update token usage for {}/IMAGE2TEXT used_tokens: {}".format(self.tenant_id, used_tokens))
  277. if self.langfuse:
  278. generation.update(output={"output": txt}, usage_details={"total_tokens": used_tokens})
  279. generation.end()
  280. return txt
  281. def transcription(self, audio):
  282. if self.langfuse:
  283. generation = self.langfuse.start_generation(trace_context=self.trace_context, name="transcription", metadata={"model": self.llm_name})
  284. txt, used_tokens = self.mdl.transcription(audio)
  285. if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
  286. logging.error("LLMBundle.transcription can't update token usage for {}/SEQUENCE2TXT used_tokens: {}".format(self.tenant_id, used_tokens))
  287. if self.langfuse:
  288. generation.update(output={"output": txt}, usage_details={"total_tokens": used_tokens})
  289. generation.end()
  290. return txt
  291. def tts(self, text: str) -> Generator[bytes, None, None]:
  292. if self.langfuse:
  293. generation = self.langfuse.start_generation(trace_context=self.trace_context, name="tts", input={"text": text})
  294. for chunk in self.mdl.tts(text):
  295. if isinstance(chunk, int):
  296. if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, chunk, self.llm_name):
  297. logging.error("LLMBundle.tts can't update token usage for {}/TTS".format(self.tenant_id))
  298. return
  299. yield chunk
  300. if self.langfuse:
  301. generation.end()
  302. def _remove_reasoning_content(self, txt: str) -> str:
  303. first_think_start = txt.find("<think>")
  304. if first_think_start == -1:
  305. return txt
  306. last_think_end = txt.rfind("</think>")
  307. if last_think_end == -1:
  308. return txt
  309. if last_think_end < first_think_start:
  310. return txt
  311. return txt[last_think_end + len("</think>") :]
  312. def chat(self, system: str, history: list, gen_conf: dict = {}, **kwargs) -> str:
  313. if self.langfuse:
  314. generation = self.langfuse.start_generation(trace_context=self.trace_context, name="chat", model=self.llm_name, input={"system": system, "history": history})
  315. chat_partial = partial(self.mdl.chat, system, history, gen_conf)
  316. if self.is_tools and self.mdl.is_tools:
  317. chat_partial = partial(self.mdl.chat_with_tools, system, history, gen_conf)
  318. txt, used_tokens = chat_partial(**kwargs)
  319. txt = self._remove_reasoning_content(txt)
  320. if not self.verbose_tool_use:
  321. txt = re.sub(r"<tool_call>.*?</tool_call>", "", txt, flags=re.DOTALL)
  322. if isinstance(txt, int) and not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens, self.llm_name):
  323. logging.error("LLMBundle.chat can't update token usage for {}/CHAT llm_name: {}, used_tokens: {}".format(self.tenant_id, self.llm_name, used_tokens))
  324. if self.langfuse:
  325. generation.update(output={"output": txt}, usage_details={"total_tokens": used_tokens})
  326. generation.end()
  327. return txt
  328. def chat_streamly(self, system: str, history: list, gen_conf: dict = {}, **kwargs):
  329. if self.langfuse:
  330. generation = self.langfuse.start_generation(trace_context=self.trace_context, name="chat_streamly", model=self.llm_name, input={"system": system, "history": history})
  331. ans = ""
  332. chat_partial = partial(self.mdl.chat_streamly, system, history, gen_conf)
  333. total_tokens = 0
  334. if self.is_tools and self.mdl.is_tools:
  335. chat_partial = partial(self.mdl.chat_streamly_with_tools, system, history, gen_conf)
  336. for txt in chat_partial(**kwargs):
  337. if isinstance(txt, int):
  338. total_tokens = txt
  339. if self.langfuse:
  340. generation.update(output={"output": ans})
  341. generation.end()
  342. break
  343. if txt.endswith("</think>"):
  344. ans = ans.rstrip("</think>")
  345. if not self.verbose_tool_use:
  346. txt = re.sub(r"<tool_call>.*?</tool_call>", "", txt, flags=re.DOTALL)
  347. ans += txt
  348. yield ans
  349. if total_tokens > 0:
  350. if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, txt, self.llm_name):
  351. logging.error("LLMBundle.chat_streamly can't update token usage for {}/CHAT llm_name: {}, content: {}".format(self.tenant_id, self.llm_name, txt))