Du kannst nicht mehr als 25 Themen auswählen Themen müssen mit entweder einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

llm_app.py 13KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import logging
  17. import json
  18. import os
  19. from flask import request
  20. from flask_login import login_required, current_user
  21. from api.db.services.llm_service import LLMFactoriesService, TenantLLMService, LLMService
  22. from api import settings
  23. from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
  24. from api.db import StatusEnum, LLMType
  25. from api.db.db_models import TenantLLM
  26. from api.utils.api_utils import get_json_result
  27. from api.utils.file_utils import get_project_base_directory
  28. from rag.llm import EmbeddingModel, ChatModel, RerankModel, CvModel, TTSModel
  29. @manager.route('/factories', methods=['GET']) # noqa: F821
  30. @login_required
  31. def factories():
  32. try:
  33. fac = LLMFactoriesService.get_all()
  34. fac = [f.to_dict() for f in fac if f.name not in ["Youdao", "FastEmbed", "BAAI"]]
  35. llms = LLMService.get_all()
  36. mdl_types = {}
  37. for m in llms:
  38. if m.status != StatusEnum.VALID.value:
  39. continue
  40. if m.fid not in mdl_types:
  41. mdl_types[m.fid] = set([])
  42. mdl_types[m.fid].add(m.model_type)
  43. for f in fac:
  44. f["model_types"] = list(mdl_types.get(f["name"], [LLMType.CHAT, LLMType.EMBEDDING, LLMType.RERANK,
  45. LLMType.IMAGE2TEXT, LLMType.SPEECH2TEXT, LLMType.TTS]))
  46. return get_json_result(data=fac)
  47. except Exception as e:
  48. return server_error_response(e)
  49. @manager.route('/set_api_key', methods=['POST']) # noqa: F821
  50. @login_required
  51. @validate_request("llm_factory", "api_key")
  52. def set_api_key():
  53. req = request.json
  54. # test if api key works
  55. chat_passed, embd_passed, rerank_passed = False, False, False
  56. factory = req["llm_factory"]
  57. msg = ""
  58. for llm in LLMService.query(fid=factory):
  59. if not embd_passed and llm.model_type == LLMType.EMBEDDING.value:
  60. mdl = EmbeddingModel[factory](
  61. req["api_key"], llm.llm_name, base_url=req.get("base_url"))
  62. try:
  63. arr, tc = mdl.encode(["Test if the api key is available"])
  64. if len(arr[0]) == 0:
  65. raise Exception("Fail")
  66. embd_passed = True
  67. except Exception as e:
  68. msg += f"\nFail to access embedding model({llm.llm_name}) using this api key." + str(e)
  69. elif not chat_passed and llm.model_type == LLMType.CHAT.value:
  70. mdl = ChatModel[factory](
  71. req["api_key"], llm.llm_name, base_url=req.get("base_url"))
  72. try:
  73. m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}],
  74. {"temperature": 0.9, 'max_tokens': 50})
  75. if m.find("**ERROR**") >= 0:
  76. raise Exception(m)
  77. chat_passed = True
  78. except Exception as e:
  79. msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(
  80. e)
  81. elif not rerank_passed and llm.model_type == LLMType.RERANK:
  82. mdl = RerankModel[factory](
  83. req["api_key"], llm.llm_name, base_url=req.get("base_url"))
  84. try:
  85. arr, tc = mdl.similarity("What's the weather?", ["Is it sunny today?"])
  86. if len(arr) == 0 or tc == 0:
  87. raise Exception("Fail")
  88. rerank_passed = True
  89. logging.debug(f'passed model rerank {llm.llm_name}')
  90. except Exception as e:
  91. msg += f"\nFail to access model({llm.llm_name}) using this api key." + str(
  92. e)
  93. if any([embd_passed, chat_passed, rerank_passed]):
  94. msg = ''
  95. break
  96. if msg:
  97. return get_data_error_result(message=msg)
  98. llm_config = {
  99. "api_key": req["api_key"],
  100. "api_base": req.get("base_url", "")
  101. }
  102. for n in ["model_type", "llm_name"]:
  103. if n in req:
  104. llm_config[n] = req[n]
  105. for llm in LLMService.query(fid=factory):
  106. llm_config["max_tokens"]=llm.max_tokens
  107. if not TenantLLMService.filter_update(
  108. [TenantLLM.tenant_id == current_user.id,
  109. TenantLLM.llm_factory == factory,
  110. TenantLLM.llm_name == llm.llm_name],
  111. llm_config):
  112. TenantLLMService.save(
  113. tenant_id=current_user.id,
  114. llm_factory=factory,
  115. llm_name=llm.llm_name,
  116. model_type=llm.model_type,
  117. api_key=llm_config["api_key"],
  118. api_base=llm_config["api_base"],
  119. max_tokens=llm_config["max_tokens"]
  120. )
  121. return get_json_result(data=True)
  122. @manager.route('/add_llm', methods=['POST']) # noqa: F821
  123. @login_required
  124. @validate_request("llm_factory")
  125. def add_llm():
  126. req = request.json
  127. factory = req["llm_factory"]
  128. api_key = req.get("api_key", "")
  129. llm_name = req["llm_name"]
  130. def apikey_json(keys):
  131. nonlocal req
  132. return json.dumps({k: req.get(k, "") for k in keys})
  133. if factory == "VolcEngine":
  134. # For VolcEngine, due to its special authentication method
  135. # Assemble ark_api_key endpoint_id into api_key
  136. api_key = apikey_json(["ark_api_key", "endpoint_id"])
  137. elif factory == "Tencent Hunyuan":
  138. req["api_key"] = apikey_json(["hunyuan_sid", "hunyuan_sk"])
  139. return set_api_key()
  140. elif factory == "Tencent Cloud":
  141. req["api_key"] = apikey_json(["tencent_cloud_sid", "tencent_cloud_sk"])
  142. return set_api_key()
  143. elif factory == "Bedrock":
  144. # For Bedrock, due to its special authentication method
  145. # Assemble bedrock_ak, bedrock_sk, bedrock_region
  146. api_key = apikey_json(["bedrock_ak", "bedrock_sk", "bedrock_region"])
  147. elif factory == "LocalAI":
  148. llm_name += "___LocalAI"
  149. elif factory == "HuggingFace":
  150. llm_name += "___HuggingFace"
  151. elif factory == "OpenAI-API-Compatible":
  152. llm_name += "___OpenAI-API"
  153. elif factory == "VLLM":
  154. llm_name += "___VLLM"
  155. elif factory == "XunFei Spark":
  156. if req["model_type"] == "chat":
  157. api_key = req.get("spark_api_password", "")
  158. elif req["model_type"] == "tts":
  159. api_key = apikey_json(["spark_app_id", "spark_api_secret", "spark_api_key"])
  160. elif factory == "BaiduYiyan":
  161. api_key = apikey_json(["yiyan_ak", "yiyan_sk"])
  162. elif factory == "Fish Audio":
  163. api_key = apikey_json(["fish_audio_ak", "fish_audio_refid"])
  164. elif factory == "Google Cloud":
  165. api_key = apikey_json(["google_project_id", "google_region", "google_service_account_key"])
  166. elif factory == "Azure-OpenAI":
  167. api_key = apikey_json(["api_key", "api_version"])
  168. llm = {
  169. "tenant_id": current_user.id,
  170. "llm_factory": factory,
  171. "model_type": req["model_type"],
  172. "llm_name": llm_name,
  173. "api_base": req.get("api_base", ""),
  174. "api_key": api_key,
  175. "max_tokens": req.get("max_tokens")
  176. }
  177. msg = ""
  178. mdl_nm = llm["llm_name"].split("___")[0]
  179. if llm["model_type"] == LLMType.EMBEDDING.value:
  180. mdl = EmbeddingModel[factory](
  181. key=llm['api_key'],
  182. model_name=mdl_nm,
  183. base_url=llm["api_base"])
  184. try:
  185. arr, tc = mdl.encode(["Test if the api key is available"])
  186. if len(arr[0]) == 0:
  187. raise Exception("Fail")
  188. except Exception as e:
  189. msg += f"\nFail to access embedding model({mdl_nm})." + str(e)
  190. elif llm["model_type"] == LLMType.CHAT.value:
  191. mdl = ChatModel[factory](
  192. key=llm['api_key'],
  193. model_name=mdl_nm,
  194. base_url=llm["api_base"]
  195. )
  196. try:
  197. m, tc = mdl.chat(None, [{"role": "user", "content": "Hello! How are you doing!"}], {
  198. "temperature": 0.9})
  199. if not tc and m.find("**ERROR**:") >= 0:
  200. raise Exception(m)
  201. except Exception as e:
  202. msg += f"\nFail to access model({mdl_nm})." + str(
  203. e)
  204. elif llm["model_type"] == LLMType.RERANK:
  205. try:
  206. mdl = RerankModel[factory](
  207. key=llm["api_key"],
  208. model_name=mdl_nm,
  209. base_url=llm["api_base"]
  210. )
  211. arr, tc = mdl.similarity("Hello~ Ragflower!", ["Hi, there!", "Ohh, my friend!"])
  212. if len(arr) == 0:
  213. raise Exception("Not known.")
  214. except KeyError:
  215. msg += f"{factory} dose not support this model({mdl_nm})"
  216. except Exception as e:
  217. msg += f"\nFail to access model({mdl_nm})." + str(
  218. e)
  219. elif llm["model_type"] == LLMType.IMAGE2TEXT.value:
  220. mdl = CvModel[factory](
  221. key=llm["api_key"],
  222. model_name=mdl_nm,
  223. base_url=llm["api_base"]
  224. )
  225. try:
  226. with open(os.path.join(get_project_base_directory(), "web/src/assets/yay.jpg"), "rb") as f:
  227. m, tc = mdl.describe(f.read())
  228. if not m and not tc:
  229. raise Exception(m)
  230. except Exception as e:
  231. msg += f"\nFail to access model({mdl_nm})." + str(e)
  232. elif llm["model_type"] == LLMType.TTS:
  233. mdl = TTSModel[factory](
  234. key=llm["api_key"], model_name=mdl_nm, base_url=llm["api_base"]
  235. )
  236. try:
  237. for resp in mdl.tts("Hello~ Ragflower!"):
  238. pass
  239. except RuntimeError as e:
  240. msg += f"\nFail to access model({mdl_nm})." + str(e)
  241. else:
  242. # TODO: check other type of models
  243. pass
  244. if msg:
  245. return get_data_error_result(message=msg)
  246. if not TenantLLMService.filter_update(
  247. [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == factory,
  248. TenantLLM.llm_name == llm["llm_name"]], llm):
  249. TenantLLMService.save(**llm)
  250. return get_json_result(data=True)
  251. @manager.route('/delete_llm', methods=['POST']) # noqa: F821
  252. @login_required
  253. @validate_request("llm_factory", "llm_name")
  254. def delete_llm():
  255. req = request.json
  256. TenantLLMService.filter_delete(
  257. [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"],
  258. TenantLLM.llm_name == req["llm_name"]])
  259. return get_json_result(data=True)
  260. @manager.route('/delete_factory', methods=['POST']) # noqa: F821
  261. @login_required
  262. @validate_request("llm_factory")
  263. def delete_factory():
  264. req = request.json
  265. TenantLLMService.filter_delete(
  266. [TenantLLM.tenant_id == current_user.id, TenantLLM.llm_factory == req["llm_factory"]])
  267. return get_json_result(data=True)
  268. @manager.route('/my_llms', methods=['GET']) # noqa: F821
  269. @login_required
  270. def my_llms():
  271. try:
  272. res = {}
  273. for o in TenantLLMService.get_my_llms(current_user.id):
  274. if o["llm_factory"] not in res:
  275. res[o["llm_factory"]] = {
  276. "tags": o["tags"],
  277. "llm": []
  278. }
  279. res[o["llm_factory"]]["llm"].append({
  280. "type": o["model_type"],
  281. "name": o["llm_name"],
  282. "used_token": o["used_tokens"]
  283. })
  284. return get_json_result(data=res)
  285. except Exception as e:
  286. return server_error_response(e)
  287. @manager.route('/list', methods=['GET']) # noqa: F821
  288. @login_required
  289. def list_app():
  290. self_deployed = ["Youdao", "FastEmbed", "BAAI", "Ollama", "Xinference", "LocalAI", "LM-Studio", "GPUStack"]
  291. weighted = ["Youdao", "FastEmbed", "BAAI"] if settings.LIGHTEN != 0 else []
  292. model_type = request.args.get("model_type")
  293. try:
  294. objs = TenantLLMService.query(tenant_id=current_user.id)
  295. facts = set([o.to_dict()["llm_factory"] for o in objs if o.api_key])
  296. llms = LLMService.get_all()
  297. llms = [m.to_dict()
  298. for m in llms if m.status == StatusEnum.VALID.value and m.fid not in weighted]
  299. for m in llms:
  300. m["available"] = m["fid"] in facts or m["llm_name"].lower() == "flag-embedding" or m["fid"] in self_deployed
  301. llm_set = set([m["llm_name"] + "@" + m["fid"] for m in llms])
  302. for o in objs:
  303. if not o.api_key:
  304. continue
  305. if o.llm_name + "@" + o.llm_factory in llm_set:
  306. continue
  307. llms.append({"llm_name": o.llm_name, "model_type": o.model_type, "fid": o.llm_factory, "available": True})
  308. res = {}
  309. for m in llms:
  310. if model_type and m["model_type"].find(model_type) < 0:
  311. continue
  312. if m["fid"] not in res:
  313. res[m["fid"]] = []
  314. res[m["fid"]].append(m)
  315. return get_json_result(data=res)
  316. except Exception as e:
  317. return server_error_response(e)