Du kannst nicht mehr als 25 Themen auswählen Themen müssen mit entweder einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

cv_model.py 39KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import base64
  17. import io
  18. import json
  19. import os
  20. from abc import ABC
  21. from io import BytesIO
  22. from urllib.parse import urljoin
  23. import requests
  24. from ollama import Client
  25. from openai import OpenAI
  26. from openai.lib.azure import AzureOpenAI
  27. from PIL import Image
  28. from zhipuai import ZhipuAI
  29. from api.utils import get_uuid
  30. from api.utils.file_utils import get_project_base_directory
  31. from rag.nlp import is_english
  32. from rag.prompts import vision_llm_describe_prompt
  33. from rag.utils import num_tokens_from_string
  34. class Base(ABC):
  35. def __init__(self, key, model_name):
  36. pass
  37. def describe(self, image):
  38. raise NotImplementedError("Please implement encode method!")
  39. def describe_with_prompt(self, image, prompt=None):
  40. raise NotImplementedError("Please implement encode method!")
  41. def chat(self, system, history, gen_conf, image=""):
  42. if system:
  43. history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
  44. try:
  45. for his in history:
  46. if his["role"] == "user":
  47. his["content"] = self.chat_prompt(his["content"], image)
  48. response = self.client.chat.completions.create(
  49. model=self.model_name,
  50. messages=history,
  51. temperature=gen_conf.get("temperature", 0.3),
  52. top_p=gen_conf.get("top_p", 0.7)
  53. )
  54. return response.choices[0].message.content.strip(), response.usage.total_tokens
  55. except Exception as e:
  56. return "**ERROR**: " + str(e), 0
  57. def chat_streamly(self, system, history, gen_conf, image=""):
  58. if system:
  59. history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
  60. ans = ""
  61. tk_count = 0
  62. try:
  63. for his in history:
  64. if his["role"] == "user":
  65. his["content"] = self.chat_prompt(his["content"], image)
  66. response = self.client.chat.completions.create(
  67. model=self.model_name,
  68. messages=history,
  69. temperature=gen_conf.get("temperature", 0.3),
  70. top_p=gen_conf.get("top_p", 0.7),
  71. stream=True
  72. )
  73. for resp in response:
  74. if not resp.choices[0].delta.content:
  75. continue
  76. delta = resp.choices[0].delta.content
  77. ans += delta
  78. if resp.choices[0].finish_reason == "length":
  79. ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
  80. [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
  81. tk_count = resp.usage.total_tokens
  82. if resp.choices[0].finish_reason == "stop":
  83. tk_count = resp.usage.total_tokens
  84. yield ans
  85. except Exception as e:
  86. yield ans + "\n**ERROR**: " + str(e)
  87. yield tk_count
  88. def image2base64(self, image):
  89. if isinstance(image, bytes):
  90. return base64.b64encode(image).decode("utf-8")
  91. if isinstance(image, BytesIO):
  92. return base64.b64encode(image.getvalue()).decode("utf-8")
  93. buffered = BytesIO()
  94. try:
  95. image.save(buffered, format="JPEG")
  96. except Exception:
  97. image.save(buffered, format="PNG")
  98. return base64.b64encode(buffered.getvalue()).decode("utf-8")
  99. def prompt(self, b64):
  100. return [
  101. {
  102. "role": "user",
  103. "content": [
  104. {
  105. "type": "image_url",
  106. "image_url": {
  107. "url": f"data:image/jpeg;base64,{b64}"
  108. },
  109. },
  110. {
  111. "text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else
  112. "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.",
  113. },
  114. ],
  115. }
  116. ]
  117. def vision_llm_prompt(self, b64, prompt=None):
  118. return [
  119. {
  120. "role": "user",
  121. "content": [
  122. {
  123. "type": "image_url",
  124. "image_url": {
  125. "url": f"data:image/jpeg;base64,{b64}"
  126. },
  127. },
  128. {
  129. "type": "text",
  130. "text": prompt if prompt else vision_llm_describe_prompt(),
  131. },
  132. ],
  133. }
  134. ]
  135. def chat_prompt(self, text, b64):
  136. return [
  137. {
  138. "type": "image_url",
  139. "image_url": {
  140. "url": f"data:image/jpeg;base64,{b64}",
  141. },
  142. },
  143. {
  144. "type": "text",
  145. "text": text
  146. },
  147. ]
  148. class GptV4(Base):
  149. def __init__(self, key, model_name="gpt-4-vision-preview", lang="Chinese", base_url="https://api.openai.com/v1"):
  150. if not base_url:
  151. base_url = "https://api.openai.com/v1"
  152. self.client = OpenAI(api_key=key, base_url=base_url)
  153. self.model_name = model_name
  154. self.lang = lang
  155. def describe(self, image):
  156. b64 = self.image2base64(image)
  157. prompt = self.prompt(b64)
  158. for i in range(len(prompt)):
  159. for c in prompt[i]["content"]:
  160. if "text" in c:
  161. c["type"] = "text"
  162. res = self.client.chat.completions.create(
  163. model=self.model_name,
  164. messages=prompt
  165. )
  166. return res.choices[0].message.content.strip(), res.usage.total_tokens
  167. def describe_with_prompt(self, image, prompt=None):
  168. b64 = self.image2base64(image)
  169. vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
  170. res = self.client.chat.completions.create(
  171. model=self.model_name,
  172. messages=vision_prompt,
  173. )
  174. return res.choices[0].message.content.strip(), res.usage.total_tokens
  175. class AzureGptV4(Base):
  176. def __init__(self, key, model_name, lang="Chinese", **kwargs):
  177. api_key = json.loads(key).get('api_key', '')
  178. api_version = json.loads(key).get('api_version', '2024-02-01')
  179. self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version)
  180. self.model_name = model_name
  181. self.lang = lang
  182. def describe(self, image):
  183. b64 = self.image2base64(image)
  184. prompt = self.prompt(b64)
  185. for i in range(len(prompt)):
  186. for c in prompt[i]["content"]:
  187. if "text" in c:
  188. c["type"] = "text"
  189. res = self.client.chat.completions.create(
  190. model=self.model_name,
  191. messages=prompt
  192. )
  193. return res.choices[0].message.content.strip(), res.usage.total_tokens
  194. def describe_with_prompt(self, image, prompt=None):
  195. b64 = self.image2base64(image)
  196. vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
  197. res = self.client.chat.completions.create(
  198. model=self.model_name,
  199. messages=vision_prompt,
  200. )
  201. return res.choices[0].message.content.strip(), res.usage.total_tokens
  202. class QWenCV(Base):
  203. def __init__(self, key, model_name="qwen-vl-chat-v1", lang="Chinese", **kwargs):
  204. import dashscope
  205. dashscope.api_key = key
  206. self.model_name = model_name
  207. self.lang = lang
  208. def prompt(self, binary):
  209. # stupid as hell
  210. tmp_dir = get_project_base_directory("tmp")
  211. if not os.path.exists(tmp_dir):
  212. os.mkdir(tmp_dir)
  213. path = os.path.join(tmp_dir, "%s.jpg" % get_uuid())
  214. Image.open(io.BytesIO(binary)).save(path)
  215. return [
  216. {
  217. "role": "user",
  218. "content": [
  219. {
  220. "image": f"file://{path}"
  221. },
  222. {
  223. "text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else
  224. "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.",
  225. },
  226. ],
  227. }
  228. ]
  229. def vision_llm_prompt(self, binary, prompt=None):
  230. # stupid as hell
  231. tmp_dir = get_project_base_directory("tmp")
  232. if not os.path.exists(tmp_dir):
  233. os.mkdir(tmp_dir)
  234. path = os.path.join(tmp_dir, "%s.jpg" % get_uuid())
  235. Image.open(io.BytesIO(binary)).save(path)
  236. return [
  237. {
  238. "role": "user",
  239. "content": [
  240. {
  241. "image": f"file://{path}"
  242. },
  243. {
  244. "text": prompt if prompt else vision_llm_describe_prompt(),
  245. },
  246. ],
  247. }
  248. ]
  249. def chat_prompt(self, text, b64):
  250. return [
  251. {"image": f"{b64}"},
  252. {"text": text},
  253. ]
  254. def describe(self, image):
  255. from http import HTTPStatus
  256. from dashscope import MultiModalConversation
  257. response = MultiModalConversation.call(model=self.model_name, messages=self.prompt(image))
  258. if response.status_code == HTTPStatus.OK:
  259. return response.output.choices[0]['message']['content'][0]["text"], response.usage.output_tokens
  260. return response.message, 0
  261. def describe_with_prompt(self, image, prompt=None):
  262. from http import HTTPStatus
  263. from dashscope import MultiModalConversation
  264. vision_prompt = self.vision_llm_prompt(image, prompt) if prompt else self.vision_llm_prompt(image)
  265. response = MultiModalConversation.call(model=self.model_name, messages=vision_prompt)
  266. if response.status_code == HTTPStatus.OK:
  267. return response.output.choices[0]['message']['content'][0]["text"], response.usage.output_tokens
  268. return response.message, 0
  269. def chat(self, system, history, gen_conf, image=""):
  270. from http import HTTPStatus
  271. from dashscope import MultiModalConversation
  272. if system:
  273. history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
  274. for his in history:
  275. if his["role"] == "user":
  276. his["content"] = self.chat_prompt(his["content"], image)
  277. response = MultiModalConversation.call(model=self.model_name, messages=history,
  278. temperature=gen_conf.get("temperature", 0.3),
  279. top_p=gen_conf.get("top_p", 0.7))
  280. ans = ""
  281. tk_count = 0
  282. if response.status_code == HTTPStatus.OK:
  283. ans = response.output.choices[0]['message']['content']
  284. if isinstance(ans, list):
  285. ans = ans[0]["text"] if ans else ""
  286. tk_count += response.usage.total_tokens
  287. if response.output.choices[0].get("finish_reason", "") == "length":
  288. ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
  289. [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
  290. return ans, tk_count
  291. return "**ERROR**: " + response.message, tk_count
  292. def chat_streamly(self, system, history, gen_conf, image=""):
  293. from http import HTTPStatus
  294. from dashscope import MultiModalConversation
  295. if system:
  296. history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
  297. for his in history:
  298. if his["role"] == "user":
  299. his["content"] = self.chat_prompt(his["content"], image)
  300. ans = ""
  301. tk_count = 0
  302. try:
  303. response = MultiModalConversation.call(model=self.model_name, messages=history,
  304. temperature=gen_conf.get("temperature", 0.3),
  305. top_p=gen_conf.get("top_p", 0.7),
  306. stream=True)
  307. for resp in response:
  308. if resp.status_code == HTTPStatus.OK:
  309. cnt = resp.output.choices[0]['message']['content']
  310. if isinstance(cnt, list):
  311. cnt = cnt[0]["text"] if ans else ""
  312. ans += cnt
  313. tk_count = resp.usage.total_tokens
  314. if resp.output.choices[0].get("finish_reason", "") == "length":
  315. ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
  316. [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
  317. yield ans
  318. else:
  319. yield ans + "\n**ERROR**: " + resp.message if str(resp.message).find(
  320. "Access") < 0 else "Out of credit. Please set the API key in **settings > Model providers.**"
  321. except Exception as e:
  322. yield ans + "\n**ERROR**: " + str(e)
  323. yield tk_count
  324. class Zhipu4V(Base):
  325. def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs):
  326. self.client = ZhipuAI(api_key=key)
  327. self.model_name = model_name
  328. self.lang = lang
  329. def describe(self, image):
  330. b64 = self.image2base64(image)
  331. prompt = self.prompt(b64)
  332. prompt[0]["content"][1]["type"] = "text"
  333. res = self.client.chat.completions.create(
  334. model=self.model_name,
  335. messages=prompt,
  336. )
  337. return res.choices[0].message.content.strip(), res.usage.total_tokens
  338. def describe_with_prompt(self, image, prompt=None):
  339. b64 = self.image2base64(image)
  340. vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
  341. res = self.client.chat.completions.create(
  342. model=self.model_name,
  343. messages=vision_prompt
  344. )
  345. return res.choices[0].message.content.strip(), res.usage.total_tokens
  346. def chat(self, system, history, gen_conf, image=""):
  347. if system:
  348. history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
  349. try:
  350. for his in history:
  351. if his["role"] == "user":
  352. his["content"] = self.chat_prompt(his["content"], image)
  353. response = self.client.chat.completions.create(
  354. model=self.model_name,
  355. messages=history,
  356. temperature=gen_conf.get("temperature", 0.3),
  357. top_p=gen_conf.get("top_p", 0.7)
  358. )
  359. return response.choices[0].message.content.strip(), response.usage.total_tokens
  360. except Exception as e:
  361. return "**ERROR**: " + str(e), 0
  362. def chat_streamly(self, system, history, gen_conf, image=""):
  363. if system:
  364. history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
  365. ans = ""
  366. tk_count = 0
  367. try:
  368. for his in history:
  369. if his["role"] == "user":
  370. his["content"] = self.chat_prompt(his["content"], image)
  371. response = self.client.chat.completions.create(
  372. model=self.model_name,
  373. messages=history,
  374. temperature=gen_conf.get("temperature", 0.3),
  375. top_p=gen_conf.get("top_p", 0.7),
  376. stream=True
  377. )
  378. for resp in response:
  379. if not resp.choices[0].delta.content:
  380. continue
  381. delta = resp.choices[0].delta.content
  382. ans += delta
  383. if resp.choices[0].finish_reason == "length":
  384. ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
  385. [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
  386. tk_count = resp.usage.total_tokens
  387. if resp.choices[0].finish_reason == "stop":
  388. tk_count = resp.usage.total_tokens
  389. yield ans
  390. except Exception as e:
  391. yield ans + "\n**ERROR**: " + str(e)
  392. yield tk_count
  393. class OllamaCV(Base):
  394. def __init__(self, key, model_name, lang="Chinese", **kwargs):
  395. self.client = Client(host=kwargs["base_url"])
  396. self.model_name = model_name
  397. self.lang = lang
  398. def describe(self, image):
  399. prompt = self.prompt("")
  400. try:
  401. response = self.client.generate(
  402. model=self.model_name,
  403. prompt=prompt[0]["content"][1]["text"],
  404. images=[image]
  405. )
  406. ans = response["response"].strip()
  407. return ans, 128
  408. except Exception as e:
  409. return "**ERROR**: " + str(e), 0
  410. def describe_with_prompt(self, image, prompt=None):
  411. vision_prompt = self.vision_llm_prompt("", prompt) if prompt else self.vision_llm_prompt("")
  412. try:
  413. response = self.client.generate(
  414. model=self.model_name,
  415. prompt=vision_prompt[0]["content"][1]["text"],
  416. images=[image],
  417. )
  418. ans = response["response"].strip()
  419. return ans, 128
  420. except Exception as e:
  421. return "**ERROR**: " + str(e), 0
  422. def chat(self, system, history, gen_conf, image=""):
  423. if system:
  424. history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
  425. try:
  426. for his in history:
  427. if his["role"] == "user":
  428. his["images"] = [image]
  429. options = {}
  430. if "temperature" in gen_conf:
  431. options["temperature"] = gen_conf["temperature"]
  432. if "top_p" in gen_conf:
  433. options["top_k"] = gen_conf["top_p"]
  434. if "presence_penalty" in gen_conf:
  435. options["presence_penalty"] = gen_conf["presence_penalty"]
  436. if "frequency_penalty" in gen_conf:
  437. options["frequency_penalty"] = gen_conf["frequency_penalty"]
  438. response = self.client.chat(
  439. model=self.model_name,
  440. messages=history,
  441. options=options,
  442. keep_alive=-1
  443. )
  444. ans = response["message"]["content"].strip()
  445. return ans, response["eval_count"] + response.get("prompt_eval_count", 0)
  446. except Exception as e:
  447. return "**ERROR**: " + str(e), 0
  448. def chat_streamly(self, system, history, gen_conf, image=""):
  449. if system:
  450. history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
  451. for his in history:
  452. if his["role"] == "user":
  453. his["images"] = [image]
  454. options = {}
  455. if "temperature" in gen_conf:
  456. options["temperature"] = gen_conf["temperature"]
  457. if "top_p" in gen_conf:
  458. options["top_k"] = gen_conf["top_p"]
  459. if "presence_penalty" in gen_conf:
  460. options["presence_penalty"] = gen_conf["presence_penalty"]
  461. if "frequency_penalty" in gen_conf:
  462. options["frequency_penalty"] = gen_conf["frequency_penalty"]
  463. ans = ""
  464. try:
  465. response = self.client.chat(
  466. model=self.model_name,
  467. messages=history,
  468. stream=True,
  469. options=options,
  470. keep_alive=-1
  471. )
  472. for resp in response:
  473. if resp["done"]:
  474. yield resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0)
  475. ans += resp["message"]["content"]
  476. yield ans
  477. except Exception as e:
  478. yield ans + "\n**ERROR**: " + str(e)
  479. yield 0
  480. class LocalAICV(GptV4):
  481. def __init__(self, key, model_name, base_url, lang="Chinese"):
  482. if not base_url:
  483. raise ValueError("Local cv model url cannot be None")
  484. base_url = urljoin(base_url, "v1")
  485. self.client = OpenAI(api_key="empty", base_url=base_url)
  486. self.model_name = model_name.split("___")[0]
  487. self.lang = lang
  488. class XinferenceCV(Base):
  489. def __init__(self, key, model_name="", lang="Chinese", base_url=""):
  490. base_url = urljoin(base_url, "v1")
  491. self.client = OpenAI(api_key=key, base_url=base_url)
  492. self.model_name = model_name
  493. self.lang = lang
  494. def describe(self, image):
  495. b64 = self.image2base64(image)
  496. res = self.client.chat.completions.create(
  497. model=self.model_name,
  498. messages=self.prompt(b64)
  499. )
  500. return res.choices[0].message.content.strip(), res.usage.total_tokens
  501. def describe_with_prompt(self, image, prompt=None):
  502. b64 = self.image2base64(image)
  503. vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
  504. res = self.client.chat.completions.create(
  505. model=self.model_name,
  506. messages=vision_prompt,
  507. )
  508. return res.choices[0].message.content.strip(), res.usage.total_tokens
  509. class GeminiCV(Base):
  510. def __init__(self, key, model_name="gemini-1.0-pro-vision-latest", lang="Chinese", **kwargs):
  511. from google.generativeai import GenerativeModel, client
  512. client.configure(api_key=key)
  513. _client = client.get_default_generative_client()
  514. self.model_name = model_name
  515. self.model = GenerativeModel(model_name=self.model_name)
  516. self.model._client = _client
  517. self.lang = lang
  518. def describe(self, image):
  519. from PIL.Image import open
  520. prompt = "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else \
  521. "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out."
  522. b64 = self.image2base64(image)
  523. img = open(BytesIO(base64.b64decode(b64)))
  524. input = [prompt, img]
  525. res = self.model.generate_content(
  526. input
  527. )
  528. return res.text, res.usage_metadata.total_token_count
  529. def describe_with_prompt(self, image, prompt=None):
  530. from PIL.Image import open
  531. b64 = self.image2base64(image)
  532. vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
  533. img = open(BytesIO(base64.b64decode(b64)))
  534. input = [vision_prompt, img]
  535. res = self.model.generate_content(
  536. input,
  537. )
  538. return res.text, res.usage_metadata.total_token_count
  539. def chat(self, system, history, gen_conf, image=""):
  540. from transformers import GenerationConfig
  541. if system:
  542. history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
  543. try:
  544. for his in history:
  545. if his["role"] == "assistant":
  546. his["role"] = "model"
  547. his["parts"] = [his["content"]]
  548. his.pop("content")
  549. if his["role"] == "user":
  550. his["parts"] = [his["content"]]
  551. his.pop("content")
  552. history[-1]["parts"].append("data:image/jpeg;base64," + image)
  553. response = self.model.generate_content(history, generation_config=GenerationConfig(
  554. temperature=gen_conf.get("temperature", 0.3),
  555. top_p=gen_conf.get("top_p", 0.7)))
  556. ans = response.text
  557. return ans, response.usage_metadata.total_token_count
  558. except Exception as e:
  559. return "**ERROR**: " + str(e), 0
  560. def chat_streamly(self, system, history, gen_conf, image=""):
  561. from transformers import GenerationConfig
  562. if system:
  563. history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
  564. ans = ""
  565. try:
  566. for his in history:
  567. if his["role"] == "assistant":
  568. his["role"] = "model"
  569. his["parts"] = [his["content"]]
  570. his.pop("content")
  571. if his["role"] == "user":
  572. his["parts"] = [his["content"]]
  573. his.pop("content")
  574. history[-1]["parts"].append("data:image/jpeg;base64," + image)
  575. response = self.model.generate_content(history, generation_config=GenerationConfig(
  576. temperature=gen_conf.get("temperature", 0.3),
  577. top_p=gen_conf.get("top_p", 0.7)), stream=True)
  578. for resp in response:
  579. if not resp.text:
  580. continue
  581. ans += resp.text
  582. yield ans
  583. except Exception as e:
  584. yield ans + "\n**ERROR**: " + str(e)
  585. yield response._chunks[-1].usage_metadata.total_token_count
  586. class OpenRouterCV(GptV4):
  587. def __init__(
  588. self,
  589. key,
  590. model_name,
  591. lang="Chinese",
  592. base_url="https://openrouter.ai/api/v1",
  593. ):
  594. if not base_url:
  595. base_url = "https://openrouter.ai/api/v1"
  596. self.client = OpenAI(api_key=key, base_url=base_url)
  597. self.model_name = model_name
  598. self.lang = lang
  599. class LocalCV(Base):
  600. def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs):
  601. pass
  602. def describe(self, image):
  603. return "", 0
  604. class NvidiaCV(Base):
  605. def __init__(
  606. self,
  607. key,
  608. model_name,
  609. lang="Chinese",
  610. base_url="https://ai.api.nvidia.com/v1/vlm",
  611. ):
  612. if not base_url:
  613. base_url = ("https://ai.api.nvidia.com/v1/vlm",)
  614. self.lang = lang
  615. factory, llm_name = model_name.split("/")
  616. if factory != "liuhaotian":
  617. self.base_url = urljoin(base_url, f"{factory}/{llm_name}")
  618. else:
  619. self.base_url = urljoin(f"{base_url}/community", llm_name.replace("-v1.6", "16"))
  620. self.key = key
  621. def describe(self, image):
  622. b64 = self.image2base64(image)
  623. response = requests.post(
  624. url=self.base_url,
  625. headers={
  626. "accept": "application/json",
  627. "content-type": "application/json",
  628. "Authorization": f"Bearer {self.key}",
  629. },
  630. json={
  631. "messages": self.prompt(b64)
  632. },
  633. )
  634. response = response.json()
  635. return (
  636. response["choices"][0]["message"]["content"].strip(),
  637. response["usage"]["total_tokens"],
  638. )
  639. def describe_with_prompt(self, image, prompt=None):
  640. b64 = self.image2base64(image)
  641. vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
  642. response = requests.post(
  643. url=self.base_url,
  644. headers={
  645. "accept": "application/json",
  646. "content-type": "application/json",
  647. "Authorization": f"Bearer {self.key}",
  648. },
  649. json={
  650. "messages": vision_prompt,
  651. },
  652. )
  653. response = response.json()
  654. return (
  655. response["choices"][0]["message"]["content"].strip(),
  656. response["usage"]["total_tokens"],
  657. )
  658. def prompt(self, b64):
  659. return [
  660. {
  661. "role": "user",
  662. "content": (
  663. "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。"
  664. if self.lang.lower() == "chinese"
  665. else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out."
  666. )
  667. + f' <img src="data:image/jpeg;base64,{b64}"/>',
  668. }
  669. ]
  670. def vision_llm_prompt(self, b64, prompt=None):
  671. return [
  672. {
  673. "role": "user",
  674. "content": (
  675. prompt if prompt else vision_llm_describe_prompt()
  676. )
  677. + f' <img src="data:image/jpeg;base64,{b64}"/>',
  678. }
  679. ]
  680. def chat_prompt(self, text, b64):
  681. return [
  682. {
  683. "role": "user",
  684. "content": text + f' <img src="data:image/jpeg;base64,{b64}"/>',
  685. }
  686. ]
  687. class StepFunCV(GptV4):
  688. def __init__(self, key, model_name="step-1v-8k", lang="Chinese", base_url="https://api.stepfun.com/v1"):
  689. if not base_url:
  690. base_url = "https://api.stepfun.com/v1"
  691. self.client = OpenAI(api_key=key, base_url=base_url)
  692. self.model_name = model_name
  693. self.lang = lang
  694. class LmStudioCV(GptV4):
  695. def __init__(self, key, model_name, lang="Chinese", base_url=""):
  696. if not base_url:
  697. raise ValueError("Local llm url cannot be None")
  698. base_url = urljoin(base_url, "v1")
  699. self.client = OpenAI(api_key="lm-studio", base_url=base_url)
  700. self.model_name = model_name
  701. self.lang = lang
  702. class OpenAI_APICV(GptV4):
  703. def __init__(self, key, model_name, lang="Chinese", base_url=""):
  704. if not base_url:
  705. raise ValueError("url cannot be None")
  706. base_url = urljoin(base_url, "v1")
  707. self.client = OpenAI(api_key=key, base_url=base_url)
  708. self.model_name = model_name.split("___")[0]
  709. self.lang = lang
  710. class TogetherAICV(GptV4):
  711. def __init__(self, key, model_name, lang="Chinese", base_url="https://api.together.xyz/v1"):
  712. if not base_url:
  713. base_url = "https://api.together.xyz/v1"
  714. super().__init__(key, model_name, lang, base_url)
  715. class YiCV(GptV4):
  716. def __init__(self, key, model_name, lang="Chinese", base_url="https://api.lingyiwanwu.com/v1",):
  717. if not base_url:
  718. base_url = "https://api.lingyiwanwu.com/v1"
  719. super().__init__(key, model_name, lang, base_url)
  720. class SILICONFLOWCV(GptV4):
  721. def __init__(self, key, model_name, lang="Chinese", base_url="https://api.siliconflow.cn/v1",):
  722. if not base_url:
  723. base_url = "https://api.siliconflow.cn/v1"
  724. super().__init__(key, model_name, lang, base_url)
  725. class HunyuanCV(Base):
  726. def __init__(self, key, model_name, lang="Chinese", base_url=None):
  727. from tencentcloud.common import credential
  728. from tencentcloud.hunyuan.v20230901 import hunyuan_client
  729. key = json.loads(key)
  730. sid = key.get("hunyuan_sid", "")
  731. sk = key.get("hunyuan_sk", "")
  732. cred = credential.Credential(sid, sk)
  733. self.model_name = model_name
  734. self.client = hunyuan_client.HunyuanClient(cred, "")
  735. self.lang = lang
  736. def describe(self, image):
  737. from tencentcloud.common.exception.tencent_cloud_sdk_exception import (
  738. TencentCloudSDKException,
  739. )
  740. from tencentcloud.hunyuan.v20230901 import models
  741. b64 = self.image2base64(image)
  742. req = models.ChatCompletionsRequest()
  743. params = {"Model": self.model_name, "Messages": self.prompt(b64)}
  744. req.from_json_string(json.dumps(params))
  745. ans = ""
  746. try:
  747. response = self.client.ChatCompletions(req)
  748. ans = response.Choices[0].Message.Content
  749. return ans, response.Usage.TotalTokens
  750. except TencentCloudSDKException as e:
  751. return ans + "\n**ERROR**: " + str(e), 0
  752. def describe_with_prompt(self, image, prompt=None):
  753. from tencentcloud.common.exception.tencent_cloud_sdk_exception import TencentCloudSDKException
  754. from tencentcloud.hunyuan.v20230901 import models
  755. b64 = self.image2base64(image)
  756. vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
  757. req = models.ChatCompletionsRequest()
  758. params = {"Model": self.model_name, "Messages": vision_prompt}
  759. req.from_json_string(json.dumps(params))
  760. ans = ""
  761. try:
  762. response = self.client.ChatCompletions(req)
  763. ans = response.Choices[0].Message.Content
  764. return ans, response.Usage.TotalTokens
  765. except TencentCloudSDKException as e:
  766. return ans + "\n**ERROR**: " + str(e), 0
  767. def prompt(self, b64):
  768. return [
  769. {
  770. "Role": "user",
  771. "Contents": [
  772. {
  773. "Type": "image_url",
  774. "ImageUrl": {
  775. "Url": f"data:image/jpeg;base64,{b64}"
  776. },
  777. },
  778. {
  779. "Type": "text",
  780. "Text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else
  781. "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.",
  782. },
  783. ],
  784. }
  785. ]
  786. class AnthropicCV(Base):
  787. def __init__(self, key, model_name, base_url=None):
  788. import anthropic
  789. self.client = anthropic.Anthropic(api_key=key)
  790. self.model_name = model_name
  791. self.system = ""
  792. self.max_tokens = 8192
  793. if "haiku" in self.model_name or "opus" in self.model_name:
  794. self.max_tokens = 4096
  795. def prompt(self, b64, prompt):
  796. return [
  797. {
  798. "role": "user",
  799. "content": [
  800. {
  801. "type": "image",
  802. "source": {
  803. "type": "base64",
  804. "media_type": "image/jpeg",
  805. "data": b64,
  806. },
  807. },
  808. {
  809. "type": "text",
  810. "text": prompt
  811. }
  812. ],
  813. }
  814. ]
  815. def describe(self, image):
  816. b64 = self.image2base64(image)
  817. prompt = self.prompt(b64,
  818. "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else
  819. "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out."
  820. )
  821. response = self.client.messages.create(
  822. model=self.model_name,
  823. max_tokens=self.max_tokens,
  824. messages=prompt
  825. )
  826. return response["content"][0]["text"].strip(), response["usage"]["input_tokens"]+response["usage"]["output_tokens"]
  827. def describe_with_prompt(self, image, prompt=None):
  828. b64 = self.image2base64(image)
  829. prompt = self.prompt(b64, prompt if prompt else vision_llm_describe_prompt())
  830. response = self.client.messages.create(
  831. model=self.model_name,
  832. max_tokens=self.max_tokens,
  833. messages=prompt
  834. )
  835. return response["content"][0]["text"].strip(), response["usage"]["input_tokens"]+response["usage"]["output_tokens"]
  836. def chat(self, system, history, gen_conf):
  837. if "presence_penalty" in gen_conf:
  838. del gen_conf["presence_penalty"]
  839. if "frequency_penalty" in gen_conf:
  840. del gen_conf["frequency_penalty"]
  841. gen_conf["max_tokens"] = self.max_tokens
  842. ans = ""
  843. try:
  844. response = self.client.messages.create(
  845. model=self.model_name,
  846. messages=history,
  847. system=system,
  848. stream=False,
  849. **gen_conf,
  850. ).to_dict()
  851. ans = response["content"][0]["text"]
  852. if response["stop_reason"] == "max_tokens":
  853. ans += (
  854. "...\nFor the content length reason, it stopped, continue?"
  855. if is_english([ans])
  856. else "······\n由于长度的原因,回答被截断了,要继续吗?"
  857. )
  858. return (
  859. ans,
  860. response["usage"]["input_tokens"] + response["usage"]["output_tokens"],
  861. )
  862. except Exception as e:
  863. return ans + "\n**ERROR**: " + str(e), 0
  864. def chat_streamly(self, system, history, gen_conf):
  865. if "presence_penalty" in gen_conf:
  866. del gen_conf["presence_penalty"]
  867. if "frequency_penalty" in gen_conf:
  868. del gen_conf["frequency_penalty"]
  869. gen_conf["max_tokens"] = self.max_tokens
  870. ans = ""
  871. total_tokens = 0
  872. try:
  873. response = self.client.messages.create(
  874. model=self.model_name,
  875. messages=history,
  876. system=system,
  877. stream=True,
  878. **gen_conf,
  879. )
  880. for res in response:
  881. if res.type == 'content_block_delta':
  882. if res.delta.type == "thinking_delta" and res.delta.thinking:
  883. if ans.find("<think>") < 0:
  884. ans += "<think>"
  885. ans = ans.replace("</think>", "")
  886. ans += res.delta.thinking + "</think>"
  887. else:
  888. text = res.delta.text
  889. ans += text
  890. total_tokens += num_tokens_from_string(text)
  891. yield ans
  892. except Exception as e:
  893. yield ans + "\n**ERROR**: " + str(e)
  894. yield total_tokens
  895. class GPUStackCV(GptV4):
  896. def __init__(self, key, model_name, lang="Chinese", base_url=""):
  897. if not base_url:
  898. raise ValueError("Local llm url cannot be None")
  899. base_url = urljoin(base_url, "v1")
  900. self.client = OpenAI(api_key=key, base_url=base_url)
  901. self.model_name = model_name
  902. self.lang = lang