| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 | 
							- import re,json,os
 - import pandas as pd
 - from rag.nlp import huqie
 - from . import regions
 - current_file_path = os.path.dirname(os.path.abspath(__file__))
 - GOODS = pd.read_csv(os.path.join(current_file_path, "res/corp_baike_len.csv"), sep="\t", header=0).fillna(0)
 - GOODS["cid"] = GOODS["cid"].astype(str)
 - GOODS = GOODS.set_index(["cid"])
 - CORP_TKS = json.load(open(os.path.join(current_file_path, "res/corp.tks.freq.json"), "r"))
 - GOOD_CORP = json.load(open(os.path.join(current_file_path, "res/good_corp.json"), "r"))
 - CORP_TAG = json.load(open(os.path.join(current_file_path, "res/corp_tag.json"), "r"))
 - 
 - def baike(cid, default_v=0):
 -     global GOODS
 -     try:
 -         return GOODS.loc[str(cid), "len"]
 -     except Exception as e:
 -         pass
 -     return default_v
 - 
 - 
 - def corpNorm(nm, add_region=True):
 -     global CORP_TKS
 -     if not nm or type(nm)!=type(""):return ""
 -     nm = huqie.tradi2simp(huqie.strQ2B(nm)).lower()
 -     nm = re.sub(r"&", "&", nm)
 -     nm = re.sub(r"[\(\)()\+'\"\t \*\\【】-]+", " ", nm)
 -     nm = re.sub(r"([—-]+.*| +co\..*|corp\..*| +inc\..*| +ltd.*)", "", nm, 10000, re.IGNORECASE)
 -     nm = re.sub(r"(计算机|技术|(技术|科技|网络)*有限公司|公司|有限|研发中心|中国|总部)$", "", nm, 10000, re.IGNORECASE)
 -     if not nm or (len(nm)<5 and not regions.isName(nm[0:2])):return nm
 - 
 -     tks = huqie.qie(nm).split(" ")
 -     reg = [t for i,t in enumerate(tks) if regions.isName(t) and (t != "中国" or i > 0)]
 -     nm = ""
 -     for t in tks:
 -         if regions.isName(t) or t in CORP_TKS:continue
 -         if re.match(r"[0-9a-zA-Z\\,.]+", t) and re.match(r".*[0-9a-zA-Z\,.]+$", nm):nm += " "
 -         nm += t
 - 
 -     r = re.search(r"^([^a-z0-9 \(\)&]{2,})[a-z ]{4,}$", nm.strip())
 -     if r:nm = r.group(1)
 -     r = re.search(r"^([a-z ]{3,})[^a-z0-9 \(\)&]{2,}$", nm.strip())
 -     if r:nm = r.group(1)
 -     return nm.strip() + (("" if not reg else "(%s)"%reg[0]) if add_region else "")
 - 
 - 
 - def rmNoise(n):
 -     n = re.sub(r"[\((][^()()]+[))]", "", n)
 -     n = re.sub(r"[,. &()()]+", "", n)
 -     return n
 - 
 - GOOD_CORP = set([corpNorm(rmNoise(c), False) for c in GOOD_CORP])
 - for c,v in CORP_TAG.items():
 -     cc = corpNorm(rmNoise(c), False)
 -     if not cc: print (c)
 - CORP_TAG = {corpNorm(rmNoise(c), False):v for c,v in CORP_TAG.items()}
 - 
 - def is_good(nm):
 -     global GOOD_CORP
 -     if nm.find("外派")>=0:return False
 -     nm = rmNoise(nm)
 -     nm = corpNorm(nm, False)
 -     for n in GOOD_CORP:
 -         if re.match(r"[0-9a-zA-Z]+$", n):
 -             if n == nm: return True
 -         elif nm.find(n)>=0:return True
 -     return False
 - 
 - def corp_tag(nm):
 -     global CORP_TAG
 -     nm = rmNoise(nm)
 -     nm = corpNorm(nm, False)
 -     for n in CORP_TAG.keys():
 -         if re.match(r"[0-9a-zA-Z., ]+$", n):
 -             if n == nm: return CORP_TAG[n]
 -         elif nm.find(n)>=0:
 -             if len(n)<3 and len(nm)/len(n)>=2:continue
 -             return CORP_TAG[n]
 -     return []
 
 
  |