選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

embedding_model.py 33KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import json
  17. import logging
  18. import os
  19. import re
  20. import threading
  21. from abc import ABC
  22. from urllib.parse import urljoin
  23. import dashscope
  24. import google.generativeai as genai
  25. import numpy as np
  26. import requests
  27. from huggingface_hub import snapshot_download
  28. from ollama import Client
  29. from openai import OpenAI
  30. from zhipuai import ZhipuAI
  31. from api import settings
  32. from api.utils.file_utils import get_home_cache_dir
  33. from api.utils.log_utils import log_exception
  34. from rag.utils import num_tokens_from_string, truncate
  35. class Base(ABC):
  36. def __init__(self, key, model_name):
  37. pass
  38. def encode(self, texts: list):
  39. raise NotImplementedError("Please implement encode method!")
  40. def encode_queries(self, text: str):
  41. raise NotImplementedError("Please implement encode method!")
  42. def total_token_count(self, resp):
  43. try:
  44. return resp.usage.total_tokens
  45. except Exception:
  46. pass
  47. try:
  48. return resp["usage"]["total_tokens"]
  49. except Exception:
  50. pass
  51. return 0
  52. class DefaultEmbedding(Base):
  53. _FACTORY_NAME = "BAAI"
  54. os.environ["CUDA_VISIBLE_DEVICES"] = "0"
  55. _model = None
  56. _model_name = ""
  57. _model_lock = threading.Lock()
  58. def __init__(self, key, model_name, **kwargs):
  59. """
  60. If you have trouble downloading HuggingFace models, -_^ this might help!!
  61. For Linux:
  62. export HF_ENDPOINT=https://hf-mirror.com
  63. For Windows:
  64. Good luck
  65. ^_-
  66. """
  67. if not settings.LIGHTEN:
  68. with DefaultEmbedding._model_lock:
  69. import torch
  70. from FlagEmbedding import FlagModel
  71. if not DefaultEmbedding._model or model_name != DefaultEmbedding._model_name:
  72. try:
  73. DefaultEmbedding._model = FlagModel(
  74. os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
  75. query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
  76. use_fp16=torch.cuda.is_available(),
  77. )
  78. DefaultEmbedding._model_name = model_name
  79. except Exception:
  80. model_dir = snapshot_download(
  81. repo_id="BAAI/bge-large-zh-v1.5", local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)), local_dir_use_symlinks=False
  82. )
  83. DefaultEmbedding._model = FlagModel(model_dir, query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:", use_fp16=torch.cuda.is_available())
  84. self._model = DefaultEmbedding._model
  85. self._model_name = DefaultEmbedding._model_name
  86. def encode(self, texts: list):
  87. batch_size = 16
  88. texts = [truncate(t, 2048) for t in texts]
  89. token_count = 0
  90. for t in texts:
  91. token_count += num_tokens_from_string(t)
  92. ress = None
  93. for i in range(0, len(texts), batch_size):
  94. if ress is None:
  95. ress = self._model.encode(texts[i : i + batch_size], convert_to_numpy=True)
  96. else:
  97. ress = np.concatenate((ress, self._model.encode(texts[i : i + batch_size], convert_to_numpy=True)), axis=0)
  98. return ress, token_count
  99. def encode_queries(self, text: str):
  100. token_count = num_tokens_from_string(text)
  101. return self._model.encode_queries([text], convert_to_numpy=False)[0][0].cpu().numpy(), token_count
  102. class OpenAIEmbed(Base):
  103. _FACTORY_NAME = "OpenAI"
  104. def __init__(self, key, model_name="text-embedding-ada-002", base_url="https://api.openai.com/v1"):
  105. if not base_url:
  106. base_url = "https://api.openai.com/v1"
  107. self.client = OpenAI(api_key=key, base_url=base_url)
  108. self.model_name = model_name
  109. def encode(self, texts: list):
  110. # OpenAI requires batch size <=16
  111. batch_size = 16
  112. texts = [truncate(t, 8191) for t in texts]
  113. ress = []
  114. total_tokens = 0
  115. for i in range(0, len(texts), batch_size):
  116. res = self.client.embeddings.create(input=texts[i : i + batch_size], model=self.model_name)
  117. try:
  118. ress.extend([d.embedding for d in res.data])
  119. total_tokens += self.total_token_count(res)
  120. except Exception as _e:
  121. log_exception(_e, res)
  122. return np.array(ress), total_tokens
  123. def encode_queries(self, text):
  124. res = self.client.embeddings.create(input=[truncate(text, 8191)], model=self.model_name)
  125. return np.array(res.data[0].embedding), self.total_token_count(res)
  126. class LocalAIEmbed(Base):
  127. _FACTORY_NAME = "LocalAI"
  128. def __init__(self, key, model_name, base_url):
  129. if not base_url:
  130. raise ValueError("Local embedding model url cannot be None")
  131. base_url = urljoin(base_url, "v1")
  132. self.client = OpenAI(api_key="empty", base_url=base_url)
  133. self.model_name = model_name.split("___")[0]
  134. def encode(self, texts: list):
  135. batch_size = 16
  136. ress = []
  137. for i in range(0, len(texts), batch_size):
  138. res = self.client.embeddings.create(input=texts[i : i + batch_size], model=self.model_name)
  139. try:
  140. ress.extend([d.embedding for d in res.data])
  141. except Exception as _e:
  142. log_exception(_e, res)
  143. # local embedding for LmStudio donot count tokens
  144. return np.array(ress), 1024
  145. def encode_queries(self, text):
  146. embds, cnt = self.encode([text])
  147. return np.array(embds[0]), cnt
  148. class AzureEmbed(OpenAIEmbed):
  149. _FACTORY_NAME = "Azure-OpenAI"
  150. def __init__(self, key, model_name, **kwargs):
  151. from openai.lib.azure import AzureOpenAI
  152. api_key = json.loads(key).get("api_key", "")
  153. api_version = json.loads(key).get("api_version", "2024-02-01")
  154. self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version)
  155. self.model_name = model_name
  156. class BaiChuanEmbed(OpenAIEmbed):
  157. _FACTORY_NAME = "BaiChuan"
  158. def __init__(self, key, model_name="Baichuan-Text-Embedding", base_url="https://api.baichuan-ai.com/v1"):
  159. if not base_url:
  160. base_url = "https://api.baichuan-ai.com/v1"
  161. super().__init__(key, model_name, base_url)
  162. class QWenEmbed(Base):
  163. _FACTORY_NAME = "Tongyi-Qianwen"
  164. def __init__(self, key, model_name="text_embedding_v2", **kwargs):
  165. self.key = key
  166. self.model_name = model_name
  167. def encode(self, texts: list):
  168. import time
  169. import dashscope
  170. batch_size = 4
  171. res = []
  172. token_count = 0
  173. texts = [truncate(t, 2048) for t in texts]
  174. for i in range(0, len(texts), batch_size):
  175. retry_max = 5
  176. resp = dashscope.TextEmbedding.call(model=self.model_name, input=texts[i : i + batch_size], api_key=self.key, text_type="document")
  177. while (resp["output"] is None or resp["output"].get("embeddings") is None) and retry_max > 0:
  178. time.sleep(10)
  179. resp = dashscope.TextEmbedding.call(model=self.model_name, input=texts[i : i + batch_size], api_key=self.key, text_type="document")
  180. retry_max -= 1
  181. if retry_max == 0 and (resp["output"] is None or resp["output"].get("embeddings") is None):
  182. if resp.get("message"):
  183. log_exception(ValueError(f"Retry_max reached, calling embedding model failed: {resp['message']}"))
  184. else:
  185. log_exception(ValueError("Retry_max reached, calling embedding model failed"))
  186. raise
  187. try:
  188. embds = [[] for _ in range(len(resp["output"]["embeddings"]))]
  189. for e in resp["output"]["embeddings"]:
  190. embds[e["text_index"]] = e["embedding"]
  191. res.extend(embds)
  192. token_count += self.total_token_count(resp)
  193. except Exception as _e:
  194. log_exception(_e, resp)
  195. raise
  196. return np.array(res), token_count
  197. def encode_queries(self, text):
  198. resp = dashscope.TextEmbedding.call(model=self.model_name, input=text[:2048], api_key=self.key, text_type="query")
  199. try:
  200. return np.array(resp["output"]["embeddings"][0]["embedding"]), self.total_token_count(resp)
  201. except Exception as _e:
  202. log_exception(_e, resp)
  203. class ZhipuEmbed(Base):
  204. _FACTORY_NAME = "ZHIPU-AI"
  205. def __init__(self, key, model_name="embedding-2", **kwargs):
  206. self.client = ZhipuAI(api_key=key)
  207. self.model_name = model_name
  208. def encode(self, texts: list):
  209. arr = []
  210. tks_num = 0
  211. MAX_LEN = -1
  212. if self.model_name.lower() == "embedding-2":
  213. MAX_LEN = 512
  214. if self.model_name.lower() == "embedding-3":
  215. MAX_LEN = 3072
  216. if MAX_LEN > 0:
  217. texts = [truncate(t, MAX_LEN) for t in texts]
  218. for txt in texts:
  219. res = self.client.embeddings.create(input=txt, model=self.model_name)
  220. try:
  221. arr.append(res.data[0].embedding)
  222. tks_num += self.total_token_count(res)
  223. except Exception as _e:
  224. log_exception(_e, res)
  225. return np.array(arr), tks_num
  226. def encode_queries(self, text):
  227. res = self.client.embeddings.create(input=text, model=self.model_name)
  228. try:
  229. return np.array(res.data[0].embedding), self.total_token_count(res)
  230. except Exception as _e:
  231. log_exception(_e, res)
  232. class OllamaEmbed(Base):
  233. _FACTORY_NAME = "Ollama"
  234. _special_tokens = ["<|endoftext|>"]
  235. def __init__(self, key, model_name, **kwargs):
  236. self.client = Client(host=kwargs["base_url"]) if not key or key == "x" else Client(host=kwargs["base_url"], headers={"Authorization": f"Bear {key}"})
  237. self.model_name = model_name
  238. def encode(self, texts: list):
  239. arr = []
  240. tks_num = 0
  241. for txt in texts:
  242. # remove special tokens if they exist
  243. for token in OllamaEmbed._special_tokens:
  244. txt = txt.replace(token, "")
  245. res = self.client.embeddings(prompt=txt, model=self.model_name, options={"use_mmap": True}, keep_alive=-1)
  246. try:
  247. arr.append(res["embedding"])
  248. except Exception as _e:
  249. log_exception(_e, res)
  250. tks_num += 128
  251. return np.array(arr), tks_num
  252. def encode_queries(self, text):
  253. # remove special tokens if they exist
  254. for token in OllamaEmbed._special_tokens:
  255. text = text.replace(token, "")
  256. res = self.client.embeddings(prompt=text, model=self.model_name, options={"use_mmap": True}, keep_alive=-1)
  257. try:
  258. return np.array(res["embedding"]), 128
  259. except Exception as _e:
  260. log_exception(_e, res)
  261. class FastEmbed(DefaultEmbedding):
  262. _FACTORY_NAME = "FastEmbed"
  263. def __init__(
  264. self,
  265. key: str | None = None,
  266. model_name: str = "BAAI/bge-small-en-v1.5",
  267. cache_dir: str | None = None,
  268. threads: int | None = None,
  269. **kwargs,
  270. ):
  271. if not settings.LIGHTEN:
  272. with FastEmbed._model_lock:
  273. from fastembed import TextEmbedding
  274. if not DefaultEmbedding._model or model_name != DefaultEmbedding._model_name:
  275. try:
  276. DefaultEmbedding._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
  277. DefaultEmbedding._model_name = model_name
  278. except Exception:
  279. cache_dir = snapshot_download(
  280. repo_id="BAAI/bge-small-en-v1.5", local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)), local_dir_use_symlinks=False
  281. )
  282. DefaultEmbedding._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
  283. self._model = DefaultEmbedding._model
  284. self._model_name = model_name
  285. def encode(self, texts: list):
  286. # Using the internal tokenizer to encode the texts and get the total
  287. # number of tokens
  288. encodings = self._model.model.tokenizer.encode_batch(texts)
  289. total_tokens = sum(len(e) for e in encodings)
  290. embeddings = [e.tolist() for e in self._model.embed(texts, batch_size=16)]
  291. return np.array(embeddings), total_tokens
  292. def encode_queries(self, text: str):
  293. # Using the internal tokenizer to encode the texts and get the total
  294. # number of tokens
  295. encoding = self._model.model.tokenizer.encode(text)
  296. embedding = next(self._model.query_embed(text))
  297. return np.array(embedding), len(encoding.ids)
  298. class XinferenceEmbed(Base):
  299. _FACTORY_NAME = "Xinference"
  300. def __init__(self, key, model_name="", base_url=""):
  301. base_url = urljoin(base_url, "v1")
  302. self.client = OpenAI(api_key=key, base_url=base_url)
  303. self.model_name = model_name
  304. def encode(self, texts: list):
  305. batch_size = 16
  306. ress = []
  307. total_tokens = 0
  308. for i in range(0, len(texts), batch_size):
  309. res = self.client.embeddings.create(input=texts[i : i + batch_size], model=self.model_name)
  310. try:
  311. ress.extend([d.embedding for d in res.data])
  312. total_tokens += self.total_token_count(res)
  313. except Exception as _e:
  314. log_exception(_e, res)
  315. return np.array(ress), total_tokens
  316. def encode_queries(self, text):
  317. res = self.client.embeddings.create(input=[text], model=self.model_name)
  318. try:
  319. return np.array(res.data[0].embedding), self.total_token_count(res)
  320. except Exception as _e:
  321. log_exception(_e, res)
  322. class YoudaoEmbed(Base):
  323. _FACTORY_NAME = "Youdao"
  324. _client = None
  325. def __init__(self, key=None, model_name="maidalun1020/bce-embedding-base_v1", **kwargs):
  326. if not settings.LIGHTEN and not YoudaoEmbed._client:
  327. from BCEmbedding import EmbeddingModel as qanthing
  328. try:
  329. logging.info("LOADING BCE...")
  330. YoudaoEmbed._client = qanthing(model_name_or_path=os.path.join(get_home_cache_dir(), "bce-embedding-base_v1"))
  331. except Exception:
  332. YoudaoEmbed._client = qanthing(model_name_or_path=model_name.replace("maidalun1020", "InfiniFlow"))
  333. def encode(self, texts: list):
  334. batch_size = 10
  335. res = []
  336. token_count = 0
  337. for t in texts:
  338. token_count += num_tokens_from_string(t)
  339. for i in range(0, len(texts), batch_size):
  340. embds = YoudaoEmbed._client.encode(texts[i : i + batch_size])
  341. res.extend(embds)
  342. return np.array(res), token_count
  343. def encode_queries(self, text):
  344. embds = YoudaoEmbed._client.encode([text])
  345. return np.array(embds[0]), num_tokens_from_string(text)
  346. class JinaEmbed(Base):
  347. _FACTORY_NAME = "Jina"
  348. def __init__(self, key, model_name="jina-embeddings-v3", base_url="https://api.jina.ai/v1/embeddings"):
  349. self.base_url = "https://api.jina.ai/v1/embeddings"
  350. self.headers = {"Content-Type": "application/json", "Authorization": f"Bearer {key}"}
  351. self.model_name = model_name
  352. def encode(self, texts: list):
  353. texts = [truncate(t, 8196) for t in texts]
  354. batch_size = 16
  355. ress = []
  356. token_count = 0
  357. for i in range(0, len(texts), batch_size):
  358. data = {"model": self.model_name, "input": texts[i : i + batch_size], "encoding_type": "float"}
  359. response = requests.post(self.base_url, headers=self.headers, json=data)
  360. try:
  361. res = response.json()
  362. ress.extend([d["embedding"] for d in res["data"]])
  363. token_count += self.total_token_count(res)
  364. except Exception as _e:
  365. log_exception(_e, response)
  366. return np.array(ress), token_count
  367. def encode_queries(self, text):
  368. embds, cnt = self.encode([text])
  369. return np.array(embds[0]), cnt
  370. class MistralEmbed(Base):
  371. _FACTORY_NAME = "Mistral"
  372. def __init__(self, key, model_name="mistral-embed", base_url=None):
  373. from mistralai.client import MistralClient
  374. self.client = MistralClient(api_key=key)
  375. self.model_name = model_name
  376. def encode(self, texts: list):
  377. texts = [truncate(t, 8196) for t in texts]
  378. batch_size = 16
  379. ress = []
  380. token_count = 0
  381. for i in range(0, len(texts), batch_size):
  382. res = self.client.embeddings(input=texts[i : i + batch_size], model=self.model_name)
  383. try:
  384. ress.extend([d.embedding for d in res.data])
  385. token_count += self.total_token_count(res)
  386. except Exception as _e:
  387. log_exception(_e, res)
  388. return np.array(ress), token_count
  389. def encode_queries(self, text):
  390. res = self.client.embeddings(input=[truncate(text, 8196)], model=self.model_name)
  391. try:
  392. return np.array(res.data[0].embedding), self.total_token_count(res)
  393. except Exception as _e:
  394. log_exception(_e, res)
  395. class BedrockEmbed(Base):
  396. _FACTORY_NAME = "Bedrock"
  397. def __init__(self, key, model_name, **kwargs):
  398. import boto3
  399. self.bedrock_ak = json.loads(key).get("bedrock_ak", "")
  400. self.bedrock_sk = json.loads(key).get("bedrock_sk", "")
  401. self.bedrock_region = json.loads(key).get("bedrock_region", "")
  402. self.model_name = model_name
  403. if self.bedrock_ak == "" or self.bedrock_sk == "" or self.bedrock_region == "":
  404. # Try to create a client using the default credentials (AWS_PROFILE, AWS_DEFAULT_REGION, etc.)
  405. self.client = boto3.client("bedrock-runtime")
  406. else:
  407. self.client = boto3.client(service_name="bedrock-runtime", region_name=self.bedrock_region, aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
  408. def encode(self, texts: list):
  409. texts = [truncate(t, 8196) for t in texts]
  410. embeddings = []
  411. token_count = 0
  412. for text in texts:
  413. if self.model_name.split(".")[0] == "amazon":
  414. body = {"inputText": text}
  415. elif self.model_name.split(".")[0] == "cohere":
  416. body = {"texts": [text], "input_type": "search_document"}
  417. response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
  418. try:
  419. model_response = json.loads(response["body"].read())
  420. embeddings.extend([model_response["embedding"]])
  421. token_count += num_tokens_from_string(text)
  422. except Exception as _e:
  423. log_exception(_e, response)
  424. return np.array(embeddings), token_count
  425. def encode_queries(self, text):
  426. embeddings = []
  427. token_count = num_tokens_from_string(text)
  428. if self.model_name.split(".")[0] == "amazon":
  429. body = {"inputText": truncate(text, 8196)}
  430. elif self.model_name.split(".")[0] == "cohere":
  431. body = {"texts": [truncate(text, 8196)], "input_type": "search_query"}
  432. response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
  433. try:
  434. model_response = json.loads(response["body"].read())
  435. embeddings.extend(model_response["embedding"])
  436. except Exception as _e:
  437. log_exception(_e, response)
  438. return np.array(embeddings), token_count
  439. class GeminiEmbed(Base):
  440. _FACTORY_NAME = "Gemini"
  441. def __init__(self, key, model_name="models/text-embedding-004", **kwargs):
  442. self.key = key
  443. self.model_name = "models/" + model_name
  444. def encode(self, texts: list):
  445. texts = [truncate(t, 2048) for t in texts]
  446. token_count = sum(num_tokens_from_string(text) for text in texts)
  447. genai.configure(api_key=self.key)
  448. batch_size = 16
  449. ress = []
  450. for i in range(0, len(texts), batch_size):
  451. result = genai.embed_content(model=self.model_name, content=texts[i : i + batch_size], task_type="retrieval_document", title="Embedding of single string")
  452. try:
  453. ress.extend(result["embedding"])
  454. except Exception as _e:
  455. log_exception(_e, result)
  456. return np.array(ress), token_count
  457. def encode_queries(self, text):
  458. genai.configure(api_key=self.key)
  459. result = genai.embed_content(model=self.model_name, content=truncate(text, 2048), task_type="retrieval_document", title="Embedding of single string")
  460. token_count = num_tokens_from_string(text)
  461. try:
  462. return np.array(result["embedding"]), token_count
  463. except Exception as _e:
  464. log_exception(_e, result)
  465. class NvidiaEmbed(Base):
  466. _FACTORY_NAME = "NVIDIA"
  467. def __init__(self, key, model_name, base_url="https://integrate.api.nvidia.com/v1/embeddings"):
  468. if not base_url:
  469. base_url = "https://integrate.api.nvidia.com/v1/embeddings"
  470. self.api_key = key
  471. self.base_url = base_url
  472. self.headers = {
  473. "accept": "application/json",
  474. "Content-Type": "application/json",
  475. "authorization": f"Bearer {self.api_key}",
  476. }
  477. self.model_name = model_name
  478. if model_name == "nvidia/embed-qa-4":
  479. self.base_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/embeddings"
  480. self.model_name = "NV-Embed-QA"
  481. if model_name == "snowflake/arctic-embed-l":
  482. self.base_url = "https://ai.api.nvidia.com/v1/retrieval/snowflake/arctic-embed-l/embeddings"
  483. def encode(self, texts: list):
  484. batch_size = 16
  485. ress = []
  486. token_count = 0
  487. for i in range(0, len(texts), batch_size):
  488. payload = {
  489. "input": texts[i : i + batch_size],
  490. "input_type": "query",
  491. "model": self.model_name,
  492. "encoding_format": "float",
  493. "truncate": "END",
  494. }
  495. response = requests.post(self.base_url, headers=self.headers, json=payload)
  496. try:
  497. res = response.json()
  498. except Exception as _e:
  499. log_exception(_e, response)
  500. ress.extend([d["embedding"] for d in res["data"]])
  501. token_count += self.total_token_count(res)
  502. return np.array(ress), token_count
  503. def encode_queries(self, text):
  504. embds, cnt = self.encode([text])
  505. return np.array(embds[0]), cnt
  506. class LmStudioEmbed(LocalAIEmbed):
  507. _FACTORY_NAME = "LM-Studio"
  508. def __init__(self, key, model_name, base_url):
  509. if not base_url:
  510. raise ValueError("Local llm url cannot be None")
  511. base_url = urljoin(base_url, "v1")
  512. self.client = OpenAI(api_key="lm-studio", base_url=base_url)
  513. self.model_name = model_name
  514. class OpenAI_APIEmbed(OpenAIEmbed):
  515. _FACTORY_NAME = ["VLLM", "OpenAI-API-Compatible"]
  516. def __init__(self, key, model_name, base_url):
  517. if not base_url:
  518. raise ValueError("url cannot be None")
  519. base_url = urljoin(base_url, "v1")
  520. self.client = OpenAI(api_key=key, base_url=base_url)
  521. self.model_name = model_name.split("___")[0]
  522. class CoHereEmbed(Base):
  523. _FACTORY_NAME = "Cohere"
  524. def __init__(self, key, model_name, base_url=None):
  525. from cohere import Client
  526. self.client = Client(api_key=key)
  527. self.model_name = model_name
  528. def encode(self, texts: list):
  529. batch_size = 16
  530. ress = []
  531. token_count = 0
  532. for i in range(0, len(texts), batch_size):
  533. res = self.client.embed(
  534. texts=texts[i : i + batch_size],
  535. model=self.model_name,
  536. input_type="search_document",
  537. embedding_types=["float"],
  538. )
  539. try:
  540. ress.extend([d for d in res.embeddings.float])
  541. token_count += res.meta.billed_units.input_tokens
  542. except Exception as _e:
  543. log_exception(_e, res)
  544. return np.array(ress), token_count
  545. def encode_queries(self, text):
  546. res = self.client.embed(
  547. texts=[text],
  548. model=self.model_name,
  549. input_type="search_query",
  550. embedding_types=["float"],
  551. )
  552. try:
  553. return np.array(res.embeddings.float[0]), int(res.meta.billed_units.input_tokens)
  554. except Exception as _e:
  555. log_exception(_e, res)
  556. class TogetherAIEmbed(OpenAIEmbed):
  557. _FACTORY_NAME = "TogetherAI"
  558. def __init__(self, key, model_name, base_url="https://api.together.xyz/v1"):
  559. if not base_url:
  560. base_url = "https://api.together.xyz/v1"
  561. super().__init__(key, model_name, base_url=base_url)
  562. class PerfXCloudEmbed(OpenAIEmbed):
  563. _FACTORY_NAME = "PerfXCloud"
  564. def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1"):
  565. if not base_url:
  566. base_url = "https://cloud.perfxlab.cn/v1"
  567. super().__init__(key, model_name, base_url)
  568. class UpstageEmbed(OpenAIEmbed):
  569. _FACTORY_NAME = "Upstage"
  570. def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar"):
  571. if not base_url:
  572. base_url = "https://api.upstage.ai/v1/solar"
  573. super().__init__(key, model_name, base_url)
  574. class SILICONFLOWEmbed(Base):
  575. _FACTORY_NAME = "SILICONFLOW"
  576. def __init__(self, key, model_name, base_url="https://api.siliconflow.cn/v1/embeddings"):
  577. if not base_url:
  578. base_url = "https://api.siliconflow.cn/v1/embeddings"
  579. self.headers = {
  580. "accept": "application/json",
  581. "content-type": "application/json",
  582. "authorization": f"Bearer {key}",
  583. }
  584. self.base_url = base_url
  585. self.model_name = model_name
  586. def encode(self, texts: list):
  587. batch_size = 16
  588. ress = []
  589. token_count = 0
  590. for i in range(0, len(texts), batch_size):
  591. texts_batch = texts[i : i + batch_size]
  592. payload = {
  593. "model": self.model_name,
  594. "input": texts_batch,
  595. "encoding_format": "float",
  596. }
  597. response = requests.post(self.base_url, json=payload, headers=self.headers)
  598. try:
  599. res = response.json()
  600. ress.extend([d["embedding"] for d in res["data"]])
  601. token_count += self.total_token_count(res)
  602. except Exception as _e:
  603. log_exception(_e, response)
  604. return np.array(ress), token_count
  605. def encode_queries(self, text):
  606. payload = {
  607. "model": self.model_name,
  608. "input": text,
  609. "encoding_format": "float",
  610. }
  611. response = requests.post(self.base_url, json=payload, headers=self.headers)
  612. try:
  613. res = response.json()
  614. return np.array(res["data"][0]["embedding"]), self.total_token_count(res)
  615. except Exception as _e:
  616. log_exception(_e, response)
  617. class ReplicateEmbed(Base):
  618. _FACTORY_NAME = "Replicate"
  619. def __init__(self, key, model_name, base_url=None):
  620. from replicate.client import Client
  621. self.model_name = model_name
  622. self.client = Client(api_token=key)
  623. def encode(self, texts: list):
  624. batch_size = 16
  625. token_count = sum([num_tokens_from_string(text) for text in texts])
  626. ress = []
  627. for i in range(0, len(texts), batch_size):
  628. res = self.client.run(self.model_name, input={"texts": texts[i : i + batch_size]})
  629. ress.extend(res)
  630. return np.array(ress), token_count
  631. def encode_queries(self, text):
  632. res = self.client.embed(self.model_name, input={"texts": [text]})
  633. return np.array(res), num_tokens_from_string(text)
  634. class BaiduYiyanEmbed(Base):
  635. _FACTORY_NAME = "BaiduYiyan"
  636. def __init__(self, key, model_name, base_url=None):
  637. import qianfan
  638. key = json.loads(key)
  639. ak = key.get("yiyan_ak", "")
  640. sk = key.get("yiyan_sk", "")
  641. self.client = qianfan.Embedding(ak=ak, sk=sk)
  642. self.model_name = model_name
  643. def encode(self, texts: list, batch_size=16):
  644. res = self.client.do(model=self.model_name, texts=texts).body
  645. try:
  646. return (
  647. np.array([r["embedding"] for r in res["data"]]),
  648. self.total_token_count(res),
  649. )
  650. except Exception as _e:
  651. log_exception(_e, res)
  652. def encode_queries(self, text):
  653. res = self.client.do(model=self.model_name, texts=[text]).body
  654. try:
  655. return (
  656. np.array([r["embedding"] for r in res["data"]]),
  657. self.total_token_count(res),
  658. )
  659. except Exception as _e:
  660. log_exception(_e, res)
  661. class VoyageEmbed(Base):
  662. _FACTORY_NAME = "Voyage AI"
  663. def __init__(self, key, model_name, base_url=None):
  664. import voyageai
  665. self.client = voyageai.Client(api_key=key)
  666. self.model_name = model_name
  667. def encode(self, texts: list):
  668. batch_size = 16
  669. ress = []
  670. token_count = 0
  671. for i in range(0, len(texts), batch_size):
  672. res = self.client.embed(texts=texts[i : i + batch_size], model=self.model_name, input_type="document")
  673. try:
  674. ress.extend(res.embeddings)
  675. token_count += res.total_tokens
  676. except Exception as _e:
  677. log_exception(_e, res)
  678. return np.array(ress), token_count
  679. def encode_queries(self, text):
  680. res = self.client.embed(texts=text, model=self.model_name, input_type="query")
  681. try:
  682. return np.array(res.embeddings)[0], res.total_tokens
  683. except Exception as _e:
  684. log_exception(_e, res)
  685. class HuggingFaceEmbed(Base):
  686. _FACTORY_NAME = "HuggingFace"
  687. def __init__(self, key, model_name, base_url=None):
  688. if not model_name:
  689. raise ValueError("Model name cannot be None")
  690. self.key = key
  691. self.model_name = model_name.split("___")[0]
  692. self.base_url = base_url or "http://127.0.0.1:8080"
  693. def encode(self, texts: list):
  694. embeddings = []
  695. for text in texts:
  696. response = requests.post(f"{self.base_url}/embed", json={"inputs": text}, headers={"Content-Type": "application/json"})
  697. if response.status_code == 200:
  698. embedding = response.json()
  699. embeddings.append(embedding[0])
  700. else:
  701. raise Exception(f"Error: {response.status_code} - {response.text}")
  702. return np.array(embeddings), sum([num_tokens_from_string(text) for text in texts])
  703. def encode_queries(self, text):
  704. response = requests.post(f"{self.base_url}/embed", json={"inputs": text}, headers={"Content-Type": "application/json"})
  705. if response.status_code == 200:
  706. embedding = response.json()
  707. return np.array(embedding[0]), num_tokens_from_string(text)
  708. else:
  709. raise Exception(f"Error: {response.status_code} - {response.text}")
  710. class VolcEngineEmbed(OpenAIEmbed):
  711. _FACTORY_NAME = "VolcEngine"
  712. def __init__(self, key, model_name, base_url="https://ark.cn-beijing.volces.com/api/v3"):
  713. if not base_url:
  714. base_url = "https://ark.cn-beijing.volces.com/api/v3"
  715. ark_api_key = json.loads(key).get("ark_api_key", "")
  716. model_name = json.loads(key).get("ep_id", "") + json.loads(key).get("endpoint_id", "")
  717. super().__init__(ark_api_key, model_name, base_url)
  718. class GPUStackEmbed(OpenAIEmbed):
  719. _FACTORY_NAME = "GPUStack"
  720. def __init__(self, key, model_name, base_url):
  721. if not base_url:
  722. raise ValueError("url cannot be None")
  723. base_url = urljoin(base_url, "v1")
  724. self.client = OpenAI(api_key=key, base_url=base_url)
  725. self.model_name = model_name
  726. class NovitaEmbed(SILICONFLOWEmbed):
  727. _FACTORY_NAME = "NovitaAI"
  728. def __init__(self, key, model_name, base_url="https://api.novita.ai/v3/openai/embeddings"):
  729. if not base_url:
  730. base_url = "https://api.novita.ai/v3/openai/embeddings"
  731. super().__init__(key, model_name, base_url)
  732. class GiteeEmbed(SILICONFLOWEmbed):
  733. _FACTORY_NAME = "GiteeAI"
  734. def __init__(self, key, model_name, base_url="https://ai.gitee.com/v1/embeddings"):
  735. if not base_url:
  736. base_url = "https://ai.gitee.com/v1/embeddings"
  737. super().__init__(key, model_name, base_url)
  738. class DeepInfraEmbed(OpenAIEmbed):
  739. _FACTORY_NAME = "DeepInfra"
  740. def __init__(self, key, model_name, base_url="https://api.deepinfra.com/v1/openai"):
  741. if not base_url:
  742. base_url = "https://api.deepinfra.com/v1/openai"
  743. super().__init__(key, model_name, base_url)