Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

sql_assistant.json 36KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724
  1. {
  2. "id": 17,
  3. "title": "SQL Assistant",
  4. "description": "SQL Assistant is an AI-powered tool that lets business users turn plain-English questions into fully formed SQL queries. Simply type your question (e.g., “Show me last quarter’s top 10 products by revenue”) and SQL Assistant generates the exact SQL, runs it against your database, and returns the results in seconds. ",
  5. "canvas_type": "Marketing",
  6. "dsl": {
  7. "components": {
  8. "Agent:WickedGoatsDivide": {
  9. "downstream": [
  10. "ExeSQL:TiredShirtsPull"
  11. ],
  12. "obj": {
  13. "component_name": "Agent",
  14. "params": {
  15. "delay_after_error": 1,
  16. "description": "",
  17. "exception_default_value": "",
  18. "exception_goto": [],
  19. "exception_method": "",
  20. "frequencyPenaltyEnabled": false,
  21. "frequency_penalty": 0.7,
  22. "llm_id": "qwen-max@Tongyi-Qianwen",
  23. "maxTokensEnabled": false,
  24. "max_retries": 3,
  25. "max_rounds": 5,
  26. "max_tokens": 256,
  27. "mcp": [],
  28. "message_history_window_size": 12,
  29. "outputs": {
  30. "content": {
  31. "type": "string",
  32. "value": ""
  33. }
  34. },
  35. "presencePenaltyEnabled": false,
  36. "presence_penalty": 0.4,
  37. "prompts": [
  38. {
  39. "content": "User's query: {sys.query}\n\nSchema: {Retrieval:HappyTiesFilm@formalized_content}\n\nSamples about question to SQL: {Retrieval:SmartNewsHammer@formalized_content}\n\nDescription about meanings of tables and files: {Retrieval:SweetDancersAppear@formalized_content}",
  40. "role": "user"
  41. }
  42. ],
  43. "sys_prompt": "### ROLE\nYou are a Text-to-SQL assistant. \nGiven a relational database schema and a natural-language request, you must produce a **single, syntactically-correct MySQL query** that answers the request. \nReturn **nothing except the SQL statement itself**\u2014no code fences, no commentary, no explanations, no comments, no trailing semicolon if not required.\n\n\n### EXAMPLES \n-- Example 1 \nUser: List every product name and its unit price. \nSQL:\nSELECT name, unit_price FROM Products;\n\n-- Example 2 \nUser: Show the names and emails of customers who placed orders in January 2025. \nSQL:\nSELECT DISTINCT c.name, c.email\nFROM Customers c\nJOIN Orders o ON o.customer_id = c.id\nWHERE o.order_date BETWEEN '2025-01-01' AND '2025-01-31';\n\n-- Example 3 \nUser: How many orders have a status of \"Completed\" for each month in 2024? \nSQL:\nSELECT DATE_FORMAT(order_date, '%Y-%m') AS month,\n COUNT(*) AS completed_orders\nFROM Orders\nWHERE status = 'Completed'\n AND YEAR(order_date) = 2024\nGROUP BY month\nORDER BY month;\n\n-- Example 4 \nUser: Which products generated at least \\$10 000 in total revenue? \nSQL:\nSELECT p.id, p.name, SUM(oi.quantity * oi.unit_price) AS revenue\nFROM Products p\nJOIN OrderItems oi ON oi.product_id = p.id\nGROUP BY p.id, p.name\nHAVING revenue >= 10000\nORDER BY revenue DESC;\n\n\n### OUTPUT GUIDELINES\n1. Think through the schema and the request. \n2. Write **only** the final MySQL query. \n3. Do **not** wrap the query in back-ticks or markdown fences. \n4. Do **not** add explanations, comments, or additional text\u2014just the SQL.",
  44. "temperature": 0.1,
  45. "temperatureEnabled": false,
  46. "tools": [],
  47. "topPEnabled": false,
  48. "top_p": 0.3,
  49. "user_prompt": "",
  50. "visual_files_var": ""
  51. }
  52. },
  53. "upstream": [
  54. "Retrieval:HappyTiesFilm",
  55. "Retrieval:SmartNewsHammer",
  56. "Retrieval:SweetDancersAppear"
  57. ]
  58. },
  59. "ExeSQL:TiredShirtsPull": {
  60. "downstream": [
  61. "Message:ShaggyMasksAttend"
  62. ],
  63. "obj": {
  64. "component_name": "ExeSQL",
  65. "params": {
  66. "database": "",
  67. "db_type": "mysql",
  68. "host": "",
  69. "max_records": 1024,
  70. "outputs": {
  71. "formalized_content": {
  72. "type": "string",
  73. "value": ""
  74. },
  75. "json": {
  76. "type": "Array<Object>",
  77. "value": []
  78. }
  79. },
  80. "password": "20010812Yy!",
  81. "port": 3306,
  82. "sql": "Agent:WickedGoatsDivide@content",
  83. "username": "13637682833@163.com"
  84. }
  85. },
  86. "upstream": [
  87. "Agent:WickedGoatsDivide"
  88. ]
  89. },
  90. "Message:ShaggyMasksAttend": {
  91. "downstream": [],
  92. "obj": {
  93. "component_name": "Message",
  94. "params": {
  95. "content": [
  96. "{ExeSQL:TiredShirtsPull@formalized_content}"
  97. ]
  98. }
  99. },
  100. "upstream": [
  101. "ExeSQL:TiredShirtsPull"
  102. ]
  103. },
  104. "Retrieval:HappyTiesFilm": {
  105. "downstream": [
  106. "Agent:WickedGoatsDivide"
  107. ],
  108. "obj": {
  109. "component_name": "Retrieval",
  110. "params": {
  111. "cross_languages": [],
  112. "empty_response": "",
  113. "kb_ids": [
  114. "ed31364c727211f0bdb2bafe6e7908e6"
  115. ],
  116. "keywords_similarity_weight": 0.7,
  117. "outputs": {
  118. "formalized_content": {
  119. "type": "string",
  120. "value": ""
  121. }
  122. },
  123. "query": "sys.query",
  124. "rerank_id": "",
  125. "similarity_threshold": 0.2,
  126. "top_k": 1024,
  127. "top_n": 8,
  128. "use_kg": false
  129. }
  130. },
  131. "upstream": [
  132. "begin"
  133. ]
  134. },
  135. "Retrieval:SmartNewsHammer": {
  136. "downstream": [
  137. "Agent:WickedGoatsDivide"
  138. ],
  139. "obj": {
  140. "component_name": "Retrieval",
  141. "params": {
  142. "cross_languages": [],
  143. "empty_response": "",
  144. "kb_ids": [
  145. "0f968106727311f08357bafe6e7908e6"
  146. ],
  147. "keywords_similarity_weight": 0.7,
  148. "outputs": {
  149. "formalized_content": {
  150. "type": "string",
  151. "value": ""
  152. }
  153. },
  154. "query": "sys.query",
  155. "rerank_id": "",
  156. "similarity_threshold": 0.2,
  157. "top_k": 1024,
  158. "top_n": 8,
  159. "use_kg": false
  160. }
  161. },
  162. "upstream": [
  163. "begin"
  164. ]
  165. },
  166. "Retrieval:SweetDancersAppear": {
  167. "downstream": [
  168. "Agent:WickedGoatsDivide"
  169. ],
  170. "obj": {
  171. "component_name": "Retrieval",
  172. "params": {
  173. "cross_languages": [],
  174. "empty_response": "",
  175. "kb_ids": [
  176. "4ad1f9d0727311f0827dbafe6e7908e6"
  177. ],
  178. "keywords_similarity_weight": 0.7,
  179. "outputs": {
  180. "formalized_content": {
  181. "type": "string",
  182. "value": ""
  183. }
  184. },
  185. "query": "sys.query",
  186. "rerank_id": "",
  187. "similarity_threshold": 0.2,
  188. "top_k": 1024,
  189. "top_n": 8,
  190. "use_kg": false
  191. }
  192. },
  193. "upstream": [
  194. "begin"
  195. ]
  196. },
  197. "begin": {
  198. "downstream": [
  199. "Retrieval:HappyTiesFilm",
  200. "Retrieval:SmartNewsHammer",
  201. "Retrieval:SweetDancersAppear"
  202. ],
  203. "obj": {
  204. "component_name": "Begin",
  205. "params": {
  206. "enablePrologue": true,
  207. "inputs": {},
  208. "mode": "conversational",
  209. "prologue": "Hi! I'm your SQL assistant, what can I do for you?"
  210. }
  211. },
  212. "upstream": []
  213. }
  214. },
  215. "globals": {
  216. "sys.conversation_turns": 0,
  217. "sys.files": [],
  218. "sys.query": "",
  219. "sys.user_id": ""
  220. },
  221. "graph": {
  222. "edges": [
  223. {
  224. "data": {
  225. "isHovered": false
  226. },
  227. "id": "xy-edge__beginstart-Retrieval:HappyTiesFilmend",
  228. "source": "begin",
  229. "sourceHandle": "start",
  230. "target": "Retrieval:HappyTiesFilm",
  231. "targetHandle": "end"
  232. },
  233. {
  234. "id": "xy-edge__beginstart-Retrieval:SmartNewsHammerend",
  235. "source": "begin",
  236. "sourceHandle": "start",
  237. "target": "Retrieval:SmartNewsHammer",
  238. "targetHandle": "end"
  239. },
  240. {
  241. "data": {
  242. "isHovered": false
  243. },
  244. "id": "xy-edge__beginstart-Retrieval:SweetDancersAppearend",
  245. "source": "begin",
  246. "sourceHandle": "start",
  247. "target": "Retrieval:SweetDancersAppear",
  248. "targetHandle": "end"
  249. },
  250. {
  251. "data": {
  252. "isHovered": false
  253. },
  254. "id": "xy-edge__Retrieval:HappyTiesFilmstart-Agent:WickedGoatsDivideend",
  255. "source": "Retrieval:HappyTiesFilm",
  256. "sourceHandle": "start",
  257. "target": "Agent:WickedGoatsDivide",
  258. "targetHandle": "end"
  259. },
  260. {
  261. "data": {
  262. "isHovered": false
  263. },
  264. "id": "xy-edge__Retrieval:SmartNewsHammerstart-Agent:WickedGoatsDivideend",
  265. "markerEnd": "logo",
  266. "source": "Retrieval:SmartNewsHammer",
  267. "sourceHandle": "start",
  268. "style": {
  269. "stroke": "rgba(91, 93, 106, 1)",
  270. "strokeWidth": 1
  271. },
  272. "target": "Agent:WickedGoatsDivide",
  273. "targetHandle": "end",
  274. "type": "buttonEdge",
  275. "zIndex": 1001
  276. },
  277. {
  278. "data": {
  279. "isHovered": false
  280. },
  281. "id": "xy-edge__Retrieval:SweetDancersAppearstart-Agent:WickedGoatsDivideend",
  282. "markerEnd": "logo",
  283. "source": "Retrieval:SweetDancersAppear",
  284. "sourceHandle": "start",
  285. "style": {
  286. "stroke": "rgba(91, 93, 106, 1)",
  287. "strokeWidth": 1
  288. },
  289. "target": "Agent:WickedGoatsDivide",
  290. "targetHandle": "end",
  291. "type": "buttonEdge",
  292. "zIndex": 1001
  293. },
  294. {
  295. "data": {
  296. "isHovered": false
  297. },
  298. "id": "xy-edge__Agent:WickedGoatsDividestart-ExeSQL:TiredShirtsPullend",
  299. "source": "Agent:WickedGoatsDivide",
  300. "sourceHandle": "start",
  301. "target": "ExeSQL:TiredShirtsPull",
  302. "targetHandle": "end"
  303. },
  304. {
  305. "data": {
  306. "isHovered": false
  307. },
  308. "id": "xy-edge__ExeSQL:TiredShirtsPullstart-Message:ShaggyMasksAttendend",
  309. "source": "ExeSQL:TiredShirtsPull",
  310. "sourceHandle": "start",
  311. "target": "Message:ShaggyMasksAttend",
  312. "targetHandle": "end"
  313. }
  314. ],
  315. "nodes": [
  316. {
  317. "data": {
  318. "form": {
  319. "enablePrologue": true,
  320. "inputs": {},
  321. "mode": "conversational",
  322. "prologue": "Hi! I'm your SQL assistant, what can I do for you?"
  323. },
  324. "label": "Begin",
  325. "name": "begin"
  326. },
  327. "id": "begin",
  328. "measured": {
  329. "height": 48,
  330. "width": 200
  331. },
  332. "position": {
  333. "x": 50,
  334. "y": 200
  335. },
  336. "selected": false,
  337. "sourcePosition": "left",
  338. "targetPosition": "right",
  339. "type": "beginNode"
  340. },
  341. {
  342. "data": {
  343. "form": {
  344. "cross_languages": [],
  345. "empty_response": "",
  346. "kb_ids": [
  347. "ed31364c727211f0bdb2bafe6e7908e6"
  348. ],
  349. "keywords_similarity_weight": 0.7,
  350. "outputs": {
  351. "formalized_content": {
  352. "type": "string",
  353. "value": ""
  354. }
  355. },
  356. "query": "sys.query",
  357. "rerank_id": "",
  358. "similarity_threshold": 0.2,
  359. "top_k": 1024,
  360. "top_n": 8,
  361. "use_kg": false
  362. },
  363. "label": "Retrieval",
  364. "name": "Schema"
  365. },
  366. "dragging": false,
  367. "id": "Retrieval:HappyTiesFilm",
  368. "measured": {
  369. "height": 96,
  370. "width": 200
  371. },
  372. "position": {
  373. "x": 414,
  374. "y": 20.5
  375. },
  376. "selected": false,
  377. "sourcePosition": "right",
  378. "targetPosition": "left",
  379. "type": "retrievalNode"
  380. },
  381. {
  382. "data": {
  383. "form": {
  384. "cross_languages": [],
  385. "empty_response": "",
  386. "kb_ids": [
  387. "0f968106727311f08357bafe6e7908e6"
  388. ],
  389. "keywords_similarity_weight": 0.7,
  390. "outputs": {
  391. "formalized_content": {
  392. "type": "string",
  393. "value": ""
  394. }
  395. },
  396. "query": "sys.query",
  397. "rerank_id": "",
  398. "similarity_threshold": 0.2,
  399. "top_k": 1024,
  400. "top_n": 8,
  401. "use_kg": false
  402. },
  403. "label": "Retrieval",
  404. "name": "Question to SQL"
  405. },
  406. "dragging": false,
  407. "id": "Retrieval:SmartNewsHammer",
  408. "measured": {
  409. "height": 96,
  410. "width": 200
  411. },
  412. "position": {
  413. "x": 406.5,
  414. "y": 175.5
  415. },
  416. "selected": false,
  417. "sourcePosition": "right",
  418. "targetPosition": "left",
  419. "type": "retrievalNode"
  420. },
  421. {
  422. "data": {
  423. "form": {
  424. "cross_languages": [],
  425. "empty_response": "",
  426. "kb_ids": [
  427. "4ad1f9d0727311f0827dbafe6e7908e6"
  428. ],
  429. "keywords_similarity_weight": 0.7,
  430. "outputs": {
  431. "formalized_content": {
  432. "type": "string",
  433. "value": ""
  434. }
  435. },
  436. "query": "sys.query",
  437. "rerank_id": "",
  438. "similarity_threshold": 0.2,
  439. "top_k": 1024,
  440. "top_n": 8,
  441. "use_kg": false
  442. },
  443. "label": "Retrieval",
  444. "name": "Database Description"
  445. },
  446. "dragging": false,
  447. "id": "Retrieval:SweetDancersAppear",
  448. "measured": {
  449. "height": 96,
  450. "width": 200
  451. },
  452. "position": {
  453. "x": 403.5,
  454. "y": 328
  455. },
  456. "selected": false,
  457. "sourcePosition": "right",
  458. "targetPosition": "left",
  459. "type": "retrievalNode"
  460. },
  461. {
  462. "data": {
  463. "form": {
  464. "delay_after_error": 1,
  465. "description": "",
  466. "exception_default_value": "",
  467. "exception_goto": [],
  468. "exception_method": "",
  469. "frequencyPenaltyEnabled": false,
  470. "frequency_penalty": 0.7,
  471. "llm_id": "qwen-max@Tongyi-Qianwen",
  472. "maxTokensEnabled": false,
  473. "max_retries": 3,
  474. "max_rounds": 5,
  475. "max_tokens": 256,
  476. "mcp": [],
  477. "message_history_window_size": 12,
  478. "outputs": {
  479. "content": {
  480. "type": "string",
  481. "value": ""
  482. }
  483. },
  484. "presencePenaltyEnabled": false,
  485. "presence_penalty": 0.4,
  486. "prompts": [
  487. {
  488. "content": "User's query: {sys.query}\n\nSchema: {Retrieval:HappyTiesFilm@formalized_content}\n\nSamples about question to SQL: {Retrieval:SmartNewsHammer@formalized_content}\n\nDescription about meanings of tables and files: {Retrieval:SweetDancersAppear@formalized_content}",
  489. "role": "user"
  490. }
  491. ],
  492. "sys_prompt": "### ROLE\nYou are a Text-to-SQL assistant. \nGiven a relational database schema and a natural-language request, you must produce a **single, syntactically-correct MySQL query** that answers the request. \nReturn **nothing except the SQL statement itself**\u2014no code fences, no commentary, no explanations, no comments, no trailing semicolon if not required.\n\n\n### EXAMPLES \n-- Example 1 \nUser: List every product name and its unit price. \nSQL:\nSELECT name, unit_price FROM Products;\n\n-- Example 2 \nUser: Show the names and emails of customers who placed orders in January 2025. \nSQL:\nSELECT DISTINCT c.name, c.email\nFROM Customers c\nJOIN Orders o ON o.customer_id = c.id\nWHERE o.order_date BETWEEN '2025-01-01' AND '2025-01-31';\n\n-- Example 3 \nUser: How many orders have a status of \"Completed\" for each month in 2024? \nSQL:\nSELECT DATE_FORMAT(order_date, '%Y-%m') AS month,\n COUNT(*) AS completed_orders\nFROM Orders\nWHERE status = 'Completed'\n AND YEAR(order_date) = 2024\nGROUP BY month\nORDER BY month;\n\n-- Example 4 \nUser: Which products generated at least \\$10 000 in total revenue? \nSQL:\nSELECT p.id, p.name, SUM(oi.quantity * oi.unit_price) AS revenue\nFROM Products p\nJOIN OrderItems oi ON oi.product_id = p.id\nGROUP BY p.id, p.name\nHAVING revenue >= 10000\nORDER BY revenue DESC;\n\n\n### OUTPUT GUIDELINES\n1. Think through the schema and the request. \n2. Write **only** the final MySQL query. \n3. Do **not** wrap the query in back-ticks or markdown fences. \n4. Do **not** add explanations, comments, or additional text\u2014just the SQL.",
  493. "temperature": 0.1,
  494. "temperatureEnabled": false,
  495. "tools": [],
  496. "topPEnabled": false,
  497. "top_p": 0.3,
  498. "user_prompt": "",
  499. "visual_files_var": ""
  500. },
  501. "label": "Agent",
  502. "name": "SQL Generator "
  503. },
  504. "dragging": false,
  505. "id": "Agent:WickedGoatsDivide",
  506. "measured": {
  507. "height": 84,
  508. "width": 200
  509. },
  510. "position": {
  511. "x": 981,
  512. "y": 174
  513. },
  514. "selected": false,
  515. "sourcePosition": "right",
  516. "targetPosition": "left",
  517. "type": "agentNode"
  518. },
  519. {
  520. "data": {
  521. "form": {
  522. "database": "",
  523. "db_type": "mysql",
  524. "host": "",
  525. "max_records": 1024,
  526. "outputs": {
  527. "formalized_content": {
  528. "type": "string",
  529. "value": ""
  530. },
  531. "json": {
  532. "type": "Array<Object>",
  533. "value": []
  534. }
  535. },
  536. "password": "20010812Yy!",
  537. "port": 3306,
  538. "sql": "Agent:WickedGoatsDivide@content",
  539. "username": "13637682833@163.com"
  540. },
  541. "label": "ExeSQL",
  542. "name": "ExeSQL"
  543. },
  544. "dragging": false,
  545. "id": "ExeSQL:TiredShirtsPull",
  546. "measured": {
  547. "height": 56,
  548. "width": 200
  549. },
  550. "position": {
  551. "x": 1211.5,
  552. "y": 212.5
  553. },
  554. "selected": false,
  555. "sourcePosition": "right",
  556. "targetPosition": "left",
  557. "type": "ragNode"
  558. },
  559. {
  560. "data": {
  561. "form": {
  562. "content": [
  563. "{ExeSQL:TiredShirtsPull@formalized_content}"
  564. ]
  565. },
  566. "label": "Message",
  567. "name": "Message"
  568. },
  569. "dragging": false,
  570. "id": "Message:ShaggyMasksAttend",
  571. "measured": {
  572. "height": 56,
  573. "width": 200
  574. },
  575. "position": {
  576. "x": 1447.3125,
  577. "y": 181.5
  578. },
  579. "selected": false,
  580. "sourcePosition": "right",
  581. "targetPosition": "left",
  582. "type": "messageNode"
  583. },
  584. {
  585. "data": {
  586. "form": {
  587. "text": "Searches for relevant database creation statements.\n\nIt should label with a knowledgebase to which the schema is dumped in. You could use \" General \" as parsing method, \" 2 \" as chunk size and \" ; \" as delimiter."
  588. },
  589. "label": "Note",
  590. "name": "Note Schema"
  591. },
  592. "dragHandle": ".note-drag-handle",
  593. "dragging": false,
  594. "height": 188,
  595. "id": "Note:ThickClubsFloat",
  596. "measured": {
  597. "height": 188,
  598. "width": 392
  599. },
  600. "position": {
  601. "x": 689,
  602. "y": -180.31251144409183
  603. },
  604. "resizing": false,
  605. "selected": false,
  606. "sourcePosition": "right",
  607. "targetPosition": "left",
  608. "type": "noteNode",
  609. "width": 392
  610. },
  611. {
  612. "data": {
  613. "form": {
  614. "text": "Searches for samples about question to SQL. \n\nYou could use \" Q&A \" as parsing method.\n\nPlease check this dataset:\nhttps://huggingface.co/datasets/InfiniFlow/text2sql"
  615. },
  616. "label": "Note",
  617. "name": "Note: Question to SQL"
  618. },
  619. "dragHandle": ".note-drag-handle",
  620. "dragging": false,
  621. "height": 154,
  622. "id": "Note:ElevenLionsJoke",
  623. "measured": {
  624. "height": 154,
  625. "width": 345
  626. },
  627. "position": {
  628. "x": 693.5,
  629. "y": 138
  630. },
  631. "resizing": false,
  632. "selected": false,
  633. "sourcePosition": "right",
  634. "targetPosition": "left",
  635. "type": "noteNode",
  636. "width": 345
  637. },
  638. {
  639. "data": {
  640. "form": {
  641. "text": "Searches for description about meanings of tables and fields.\n\nYou could use \" General \" as parsing method, \" 2 \" as chunk size and \" ### \" as delimiter."
  642. },
  643. "label": "Note",
  644. "name": "Note: Database Description"
  645. },
  646. "dragHandle": ".note-drag-handle",
  647. "dragging": false,
  648. "height": 158,
  649. "id": "Note:ManyRosesTrade",
  650. "measured": {
  651. "height": 158,
  652. "width": 408
  653. },
  654. "position": {
  655. "x": 691.5,
  656. "y": 435.69736389555317
  657. },
  658. "resizing": false,
  659. "selected": false,
  660. "sourcePosition": "right",
  661. "targetPosition": "left",
  662. "type": "noteNode",
  663. "width": 408
  664. },
  665. {
  666. "data": {
  667. "form": {
  668. "text": "The Agent learns which tables may be available based on the responses from three knowledge bases and converts the user's input into SQL statements."
  669. },
  670. "label": "Note",
  671. "name": "Note: SQL Generator"
  672. },
  673. "dragHandle": ".note-drag-handle",
  674. "dragging": false,
  675. "height": 132,
  676. "id": "Note:RudeHousesInvite",
  677. "measured": {
  678. "height": 132,
  679. "width": 383
  680. },
  681. "position": {
  682. "x": 1106.9254833678003,
  683. "y": 290.5891036507015
  684. },
  685. "resizing": false,
  686. "selected": false,
  687. "sourcePosition": "right",
  688. "targetPosition": "left",
  689. "type": "noteNode",
  690. "width": 383
  691. },
  692. {
  693. "data": {
  694. "form": {
  695. "text": "Connect to your database to execute SQL statements."
  696. },
  697. "label": "Note",
  698. "name": "Note: SQL Executor"
  699. },
  700. "dragHandle": ".note-drag-handle",
  701. "dragging": false,
  702. "id": "Note:HungryBatsLay",
  703. "measured": {
  704. "height": 136,
  705. "width": 255
  706. },
  707. "position": {
  708. "x": 1185,
  709. "y": -30
  710. },
  711. "selected": false,
  712. "sourcePosition": "right",
  713. "targetPosition": "left",
  714. "type": "noteNode"
  715. }
  716. ]
  717. },
  718. "history": [],
  719. "messages": [],
  720. "path": [],
  721. "retrieval": []
  722. },
  723. "avatar": ""
  724. }