Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

manual.py 3.8KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120
  1. import copy
  2. import re
  3. from api.db import ParserType
  4. from rag.nlp import huqie, tokenize, tokenize_table, add_positions
  5. from deepdoc.parser import PdfParser
  6. from rag.utils import num_tokens_from_string
  7. class Pdf(PdfParser):
  8. def __init__(self):
  9. self.model_speciess = ParserType.MANUAL.value
  10. super().__init__()
  11. def __call__(self, filename, binary=None, from_page=0,
  12. to_page=100000, zoomin=3, callback=None):
  13. callback(msg="OCR is running...")
  14. self.__images__(
  15. filename if not binary else binary,
  16. zoomin,
  17. from_page,
  18. to_page)
  19. callback(0.2, "OCR finished.")
  20. from timeit import default_timer as timer
  21. start = timer()
  22. self._layouts_rec(zoomin)
  23. callback(0.5, "Layout analysis finished.")
  24. print("paddle layouts:", timer() - start)
  25. self._table_transformer_job(zoomin)
  26. callback(0.7, "Table analysis finished.")
  27. self._text_merge()
  28. self._concat_downward(concat_between_pages=False)
  29. self._filter_forpages()
  30. callback(0.77, "Text merging finished")
  31. tbls = self._extract_table_figure(True, zoomin, True, True)
  32. # clean mess
  33. for b in self.boxes:
  34. b["text"] = re.sub(r"([\t  ]|\u3000){2,}", " ", b["text"].strip())
  35. # merge chunks with the same bullets
  36. self._merge_with_same_bullet()
  37. # merge title with decent chunk
  38. i = 0
  39. while i + 1 < len(self.boxes):
  40. b = self.boxes[i]
  41. if b.get("layoutno","").find("title") < 0:
  42. i += 1
  43. continue
  44. b_ = self.boxes[i + 1]
  45. b_["text"] = b["text"] + "\n" + b_["text"]
  46. b_["x0"] = min(b["x0"], b_["x0"])
  47. b_["x1"] = max(b["x1"], b_["x1"])
  48. b_["top"] = b["top"]
  49. self.boxes.pop(i)
  50. callback(0.8, "Parsing finished")
  51. for b in self.boxes: print(b["text"], b.get("layoutno"))
  52. print(tbls)
  53. return [b["text"] + self._line_tag(b, zoomin) for b in self.boxes], tbls
  54. def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
  55. """
  56. Only pdf is supported.
  57. """
  58. pdf_parser = None
  59. if re.search(r"\.pdf$", filename, re.IGNORECASE):
  60. pdf_parser = Pdf()
  61. cks, tbls = pdf_parser(filename if not binary else binary,
  62. from_page=from_page, to_page=to_page, callback=callback)
  63. else: raise NotImplementedError("file type not supported yet(pdf supported)")
  64. doc = {
  65. "docnm_kwd": filename
  66. }
  67. doc["title_tks"] = huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", doc["docnm_kwd"]))
  68. doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
  69. # is it English
  70. eng = lang.lower() == "english"#pdf_parser.is_english
  71. res = tokenize_table(tbls, doc, eng)
  72. i = 0
  73. chunk = []
  74. tk_cnt = 0
  75. def add_chunk():
  76. nonlocal chunk, res, doc, pdf_parser, tk_cnt
  77. d = copy.deepcopy(doc)
  78. ck = "\n".join(chunk)
  79. tokenize(d, pdf_parser.remove_tag(ck), pdf_parser.is_english)
  80. d["image"], poss = pdf_parser.crop(ck, need_position=True)
  81. add_positions(d, poss)
  82. res.append(d)
  83. chunk = []
  84. tk_cnt = 0
  85. while i < len(cks):
  86. if tk_cnt > 128: add_chunk()
  87. txt = cks[i]
  88. txt_ = pdf_parser.remove_tag(txt)
  89. i += 1
  90. cnt = num_tokens_from_string(txt_)
  91. chunk.append(txt)
  92. tk_cnt += cnt
  93. if chunk: add_chunk()
  94. for i, d in enumerate(res):
  95. print(d)
  96. # d["image"].save(f"./logs/{i}.jpg")
  97. return res
  98. if __name__ == "__main__":
  99. import sys
  100. def dummy(a, b):
  101. pass
  102. chunk(sys.argv[1], callback=dummy)