| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
-
-
- import logging
-
- from flask import request
- from peewee import OperationalError
- from pydantic import ValidationError
-
- from api import settings
- from api.db import FileSource, StatusEnum
- from api.db.db_models import File
- from api.db.services.document_service import DocumentService
- from api.db.services.file2document_service import File2DocumentService
- from api.db.services.file_service import FileService
- from api.db.services.knowledgebase_service import KnowledgebaseService
- from api.db.services.llm_service import LLMService, TenantLLMService
- from api.db.services.user_service import TenantService
- from api.utils import get_uuid
- from api.utils.api_utils import (
- check_duplicate_ids,
- dataset_readonly_fields,
- get_error_argument_result,
- get_error_data_result,
- get_parser_config,
- get_result,
- token_required,
- valid,
- valid_parser_config,
- )
- from api.utils.validation_utils import CreateDatasetReq, format_validation_error_message
-
-
- @manager.route("/datasets", methods=["POST"]) # noqa: F821
- @token_required
- def create(tenant_id):
- """
- Create a new dataset.
- ---
- tags:
- - Datasets
- security:
- - ApiKeyAuth: []
- parameters:
- - in: header
- name: Authorization
- type: string
- required: true
- description: Bearer token for authentication.
- - in: body
- name: body
- description: Dataset creation parameters.
- required: true
- schema:
- type: object
- required:
- - name
- properties:
- name:
- type: string
- description: Name of the dataset.
- avatar:
- type: string
- description: Base64 encoding of the avatar.
- description:
- type: string
- description: Description of the dataset.
- embedding_model:
- type: string
- description: Embedding model Name.
- permission:
- type: string
- enum: ['me', 'team']
- description: Dataset permission.
- chunk_method:
- type: string
- enum: ["naive", "book", "email", "laws", "manual", "one", "paper",
- "picture", "presentation", "qa", "table", "tag"
- ]
- description: Chunking method.
- pagerank:
- type: integer
- description: Set page rank.
- parser_config:
- type: object
- description: Parser configuration.
- responses:
- 200:
- description: Successful operation.
- schema:
- type: object
- properties:
- data:
- type: object
- """
- req_i = request.json
- if not isinstance(req_i, dict):
- return get_error_argument_result(f"Invalid request payload: expected object, got {type(req_i).__name__}")
-
- try:
- req_v = CreateDatasetReq(**req_i)
- except ValidationError as e:
- return get_error_argument_result(format_validation_error_message(e))
-
- # Field name transformations during model dump:
- # | Original | Dump Output |
- # |----------------|-------------|
- # | embedding_model| embd_id |
- # | chunk_method | parser_id |
- req = req_v.model_dump(by_alias=True)
-
- try:
- if KnowledgebaseService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value):
- return get_error_argument_result(message=f"Dataset name '{req['name']}' already exists")
- except OperationalError as e:
- logging.exception(e)
- return get_error_data_result(message="Database operation failed")
-
- req["parser_config"] = get_parser_config(req["parser_id"], req["parser_config"])
- req["id"] = get_uuid()
- req["tenant_id"] = tenant_id
- req["created_by"] = tenant_id
-
- try:
- ok, t = TenantService.get_by_id(tenant_id)
- if not ok:
- return get_error_data_result(message="Tenant not found")
- except OperationalError as e:
- logging.exception(e)
- return get_error_data_result(message="Database operation failed")
-
- if not req.get("embd_id"):
- req["embd_id"] = t.embd_id
- else:
- builtin_embedding_models = [
- "BAAI/bge-large-zh-v1.5@BAAI",
- "maidalun1020/bce-embedding-base_v1@Youdao",
- ]
- is_builtin_model = req["embd_id"] in builtin_embedding_models
- try:
- # model name must be model_name@model_factory
- llm_name, llm_factory = TenantLLMService.split_model_name_and_factory(req["embd_id"])
- is_tenant_model = TenantLLMService.query(tenant_id=tenant_id, llm_name=llm_name, llm_factory=llm_factory, model_type="embedding")
- is_supported_model = LLMService.query(llm_name=llm_name, fid=llm_factory, model_type="embedding")
- if not (is_supported_model and (is_builtin_model or is_tenant_model)):
- return get_error_argument_result(f"The embedding_model '{req['embd_id']}' is not supported")
- except OperationalError as e:
- logging.exception(e)
- return get_error_data_result(message="Database operation failed")
-
- try:
- if not KnowledgebaseService.save(**req):
- return get_error_data_result(message="Database operation failed")
- except OperationalError as e:
- logging.exception(e)
- return get_error_data_result(message="Database operation failed")
-
- try:
- ok, k = KnowledgebaseService.get_by_id(req["id"])
- if not ok:
- return get_error_data_result(message="Dataset created failed")
- except OperationalError as e:
- logging.exception(e)
- return get_error_data_result(message="Database operation failed")
-
- response_data = {}
- key_mapping = {
- "chunk_num": "chunk_count",
- "doc_num": "document_count",
- "parser_id": "chunk_method",
- "embd_id": "embedding_model",
- }
- for key, value in k.to_dict().items():
- new_key = key_mapping.get(key, key)
- response_data[new_key] = value
- return get_result(data=response_data)
-
-
- @manager.route("/datasets", methods=["DELETE"]) # noqa: F821
- @token_required
- def delete(tenant_id):
- """
- Delete datasets.
- ---
- tags:
- - Datasets
- security:
- - ApiKeyAuth: []
- parameters:
- - in: header
- name: Authorization
- type: string
- required: true
- description: Bearer token for authentication.
- - in: body
- name: body
- description: Dataset deletion parameters.
- required: true
- schema:
- type: object
- properties:
- ids:
- type: array
- items:
- type: string
- description: List of dataset IDs to delete.
- responses:
- 200:
- description: Successful operation.
- schema:
- type: object
- """
- errors = []
- success_count = 0
- req = request.json
- if not req:
- ids = None
- else:
- ids = req.get("ids")
- if not ids:
- id_list = []
- kbs = KnowledgebaseService.query(tenant_id=tenant_id)
- for kb in kbs:
- id_list.append(kb.id)
- else:
- id_list = ids
- unique_id_list, duplicate_messages = check_duplicate_ids(id_list, "dataset")
- id_list = unique_id_list
-
- for id in id_list:
- kbs = KnowledgebaseService.query(id=id, tenant_id=tenant_id)
- if not kbs:
- errors.append(f"You don't own the dataset {id}")
- continue
- for doc in DocumentService.query(kb_id=id):
- if not DocumentService.remove_document(doc, tenant_id):
- errors.append(f"Remove document error for dataset {id}")
- continue
- f2d = File2DocumentService.get_by_document_id(doc.id)
- FileService.filter_delete(
- [
- File.source_type == FileSource.KNOWLEDGEBASE,
- File.id == f2d[0].file_id,
- ]
- )
- File2DocumentService.delete_by_document_id(doc.id)
- FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.type == "folder", File.name == kbs[0].name])
- if not KnowledgebaseService.delete_by_id(id):
- errors.append(f"Delete dataset error for {id}")
- continue
- success_count += 1
- if errors:
- if success_count > 0:
- return get_result(data={"success_count": success_count, "errors": errors}, message=f"Partially deleted {success_count} datasets with {len(errors)} errors")
- else:
- return get_error_data_result(message="; ".join(errors))
- if duplicate_messages:
- if success_count > 0:
- return get_result(
- message=f"Partially deleted {success_count} datasets with {len(duplicate_messages)} errors",
- data={"success_count": success_count, "errors": duplicate_messages},
- )
- else:
- return get_error_data_result(message=";".join(duplicate_messages))
- return get_result(code=settings.RetCode.SUCCESS)
-
-
- @manager.route("/datasets/<dataset_id>", methods=["PUT"]) # noqa: F821
- @token_required
- def update(tenant_id, dataset_id):
- """
- Update a dataset.
- ---
- tags:
- - Datasets
- security:
- - ApiKeyAuth: []
- parameters:
- - in: path
- name: dataset_id
- type: string
- required: true
- description: ID of the dataset to update.
- - in: header
- name: Authorization
- type: string
- required: true
- description: Bearer token for authentication.
- - in: body
- name: body
- description: Dataset update parameters.
- required: true
- schema:
- type: object
- properties:
- name:
- type: string
- description: New name of the dataset.
- permission:
- type: string
- enum: ['me', 'team']
- description: Updated permission.
- chunk_method:
- type: string
- enum: ["naive", "manual", "qa", "table", "paper", "book", "laws",
- "presentation", "picture", "one", "email", "tag"
- ]
- description: Updated chunking method.
- parser_config:
- type: object
- description: Updated parser configuration.
- responses:
- 200:
- description: Successful operation.
- schema:
- type: object
- """
- if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
- return get_error_data_result(message="You don't own the dataset")
- req = request.json
- for k in req.keys():
- if dataset_readonly_fields(k):
- return get_result(code=settings.RetCode.ARGUMENT_ERROR, message=f"'{k}' is readonly.")
- e, t = TenantService.get_by_id(tenant_id)
- invalid_keys = {"id", "embd_id", "chunk_num", "doc_num", "parser_id", "create_date", "create_time", "created_by", "status", "token_num", "update_date", "update_time"}
- if any(key in req for key in invalid_keys):
- return get_error_data_result(message="The input parameters are invalid.")
- permission = req.get("permission")
- chunk_method = req.get("chunk_method")
- parser_config = req.get("parser_config")
- valid_parser_config(parser_config)
- valid_permission = ["me", "team"]
- valid_chunk_method = ["naive", "manual", "qa", "table", "paper", "book", "laws", "presentation", "picture", "one", "email", "tag"]
- check_validation = valid(
- permission,
- valid_permission,
- chunk_method,
- valid_chunk_method,
- )
- if check_validation:
- return check_validation
- if "tenant_id" in req:
- if req["tenant_id"] != tenant_id:
- return get_error_data_result(message="Can't change `tenant_id`.")
- e, kb = KnowledgebaseService.get_by_id(dataset_id)
- if "parser_config" in req:
- temp_dict = kb.parser_config
- temp_dict.update(req["parser_config"])
- req["parser_config"] = temp_dict
- if "chunk_count" in req:
- if req["chunk_count"] != kb.chunk_num:
- return get_error_data_result(message="Can't change `chunk_count`.")
- req.pop("chunk_count")
- if "document_count" in req:
- if req["document_count"] != kb.doc_num:
- return get_error_data_result(message="Can't change `document_count`.")
- req.pop("document_count")
- if req.get("chunk_method"):
- if kb.chunk_num != 0 and req["chunk_method"] != kb.parser_id:
- return get_error_data_result(message="If `chunk_count` is not 0, `chunk_method` is not changeable.")
- req["parser_id"] = req.pop("chunk_method")
- if req["parser_id"] != kb.parser_id:
- if not req.get("parser_config"):
- req["parser_config"] = get_parser_config(chunk_method, parser_config)
- if "embedding_model" in req:
- if kb.chunk_num != 0 and req["embedding_model"] != kb.embd_id:
- return get_error_data_result(message="If `chunk_count` is not 0, `embedding_model` is not changeable.")
- if not req.get("embedding_model"):
- return get_error_data_result("`embedding_model` can't be empty")
- valid_embedding_models = [
- "BAAI/bge-large-zh-v1.5",
- "BAAI/bge-base-en-v1.5",
- "BAAI/bge-large-en-v1.5",
- "BAAI/bge-small-en-v1.5",
- "BAAI/bge-small-zh-v1.5",
- "jinaai/jina-embeddings-v2-base-en",
- "jinaai/jina-embeddings-v2-small-en",
- "nomic-ai/nomic-embed-text-v1.5",
- "sentence-transformers/all-MiniLM-L6-v2",
- "text-embedding-v2",
- "text-embedding-v3",
- "maidalun1020/bce-embedding-base_v1",
- ]
- embd_model = LLMService.query(llm_name=req["embedding_model"], model_type="embedding")
- if embd_model:
- if req["embedding_model"] not in valid_embedding_models and not TenantLLMService.query(
- tenant_id=tenant_id,
- model_type="embedding",
- llm_name=req.get("embedding_model"),
- ):
- return get_error_data_result(f"`embedding_model` {req.get('embedding_model')} doesn't exist")
- if not embd_model:
- embd_model = TenantLLMService.query(tenant_id=tenant_id, model_type="embedding", llm_name=req.get("embedding_model"))
-
- if not embd_model:
- return get_error_data_result(f"`embedding_model` {req.get('embedding_model')} doesn't exist")
- req["embd_id"] = req.pop("embedding_model")
- if "name" in req:
- req["name"] = req["name"].strip()
- if len(req["name"]) >= 128:
- return get_error_data_result(message="Dataset name should not be longer than 128 characters.")
- if req["name"].lower() != kb.name.lower() and len(KnowledgebaseService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value)) > 0:
- return get_error_data_result(message="Duplicated dataset name in updating dataset.")
- flds = list(req.keys())
- for f in flds:
- if req[f] == "" and f in ["permission", "parser_id", "chunk_method"]:
- del req[f]
- if not KnowledgebaseService.update_by_id(kb.id, req):
- return get_error_data_result(message="Update dataset error.(Database error)")
- return get_result(code=settings.RetCode.SUCCESS)
-
-
- @manager.route("/datasets", methods=["GET"]) # noqa: F821
- @token_required
- def list_datasets(tenant_id):
- """
- List datasets.
- ---
- tags:
- - Datasets
- security:
- - ApiKeyAuth: []
- parameters:
- - in: query
- name: id
- type: string
- required: false
- description: Dataset ID to filter.
- - in: query
- name: name
- type: string
- required: false
- description: Dataset name to filter.
- - in: query
- name: page
- type: integer
- required: false
- default: 1
- description: Page number.
- - in: query
- name: page_size
- type: integer
- required: false
- default: 1024
- description: Number of items per page.
- - in: query
- name: orderby
- type: string
- required: false
- default: "create_time"
- description: Field to order by.
- - in: query
- name: desc
- type: boolean
- required: false
- default: true
- description: Order in descending.
- - in: header
- name: Authorization
- type: string
- required: true
- description: Bearer token for authentication.
- responses:
- 200:
- description: Successful operation.
- schema:
- type: array
- items:
- type: object
- """
- id = request.args.get("id")
- name = request.args.get("name")
- if id:
- kbs = KnowledgebaseService.get_kb_by_id(id, tenant_id)
- if not kbs:
- return get_error_data_result(f"You don't own the dataset {id}")
- if name:
- kbs = KnowledgebaseService.get_kb_by_name(name, tenant_id)
- if not kbs:
- return get_error_data_result(f"You don't own the dataset {name}")
- page_number = int(request.args.get("page", 1))
- items_per_page = int(request.args.get("page_size", 30))
- orderby = request.args.get("orderby", "create_time")
- if request.args.get("desc", "false").lower() not in ["true", "false"]:
- return get_error_data_result("desc should be true or false")
- if request.args.get("desc", "true").lower() == "false":
- desc = False
- else:
- desc = True
- tenants = TenantService.get_joined_tenants_by_user_id(tenant_id)
- kbs = KnowledgebaseService.get_list(
- [m["tenant_id"] for m in tenants],
- tenant_id,
- page_number,
- items_per_page,
- orderby,
- desc,
- id,
- name,
- )
- renamed_list = []
- for kb in kbs:
- key_mapping = {
- "chunk_num": "chunk_count",
- "doc_num": "document_count",
- "parser_id": "chunk_method",
- "embd_id": "embedding_model",
- }
- renamed_data = {}
- for key, value in kb.items():
- new_key = key_mapping.get(key, key)
- renamed_data[new_key] = value
- renamed_list.append(renamed_data)
- return get_result(data=renamed_list)
|