| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import datetime
- import json
- import logging
- import os
- import hashlib
- import copy
- import re
- import sys
- import time
- import traceback
- from functools import partial
-
- from api.db.services.file2document_service import File2DocumentService
- from rag.utils.minio_conn import MINIO
- from api.db.db_models import close_connection
- from rag.settings import database_logger, SVR_QUEUE_NAME
- from rag.settings import cron_logger, DOC_MAXIMUM_SIZE
- from multiprocessing import Pool
- import numpy as np
- from elasticsearch_dsl import Q
- from multiprocessing.context import TimeoutError
- from api.db.services.task_service import TaskService
- from rag.utils.es_conn import ELASTICSEARCH
- from timeit import default_timer as timer
- from rag.utils import rmSpace, findMaxTm
-
- from rag.nlp import search
- from io import BytesIO
- import pandas as pd
-
- from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture, naive, one
-
- from api.db import LLMType, ParserType
- from api.db.services.document_service import DocumentService
- from api.db.services.llm_service import LLMBundle
- from api.utils.file_utils import get_project_base_directory
- from rag.utils.redis_conn import REDIS_CONN
-
- BATCH_SIZE = 64
-
- FACTORY = {
- "general": naive,
- ParserType.NAIVE.value: naive,
- ParserType.PAPER.value: paper,
- ParserType.BOOK.value: book,
- ParserType.PRESENTATION.value: presentation,
- ParserType.MANUAL.value: manual,
- ParserType.LAWS.value: laws,
- ParserType.QA.value: qa,
- ParserType.TABLE.value: table,
- ParserType.RESUME.value: resume,
- ParserType.PICTURE.value: picture,
- ParserType.ONE.value: one,
- }
-
-
- def set_progress(task_id, from_page=0, to_page=-1,
- prog=None, msg="Processing..."):
- if prog is not None and prog < 0:
- msg = "[ERROR]" + msg
- cancel = TaskService.do_cancel(task_id)
- if cancel:
- msg += " [Canceled]"
- prog = -1
-
- if to_page > 0:
- if msg:
- msg = f"Page({from_page+1}~{to_page+1}): " + msg
- d = {"progress_msg": msg}
- if prog is not None:
- d["progress"] = prog
- try:
- TaskService.update_progress(task_id, d)
- except Exception as e:
- cron_logger.error("set_progress:({}), {}".format(task_id, str(e)))
-
- close_connection()
- if cancel:
- sys.exit()
-
-
- def collect():
- try:
- payload = REDIS_CONN.queue_consumer(SVR_QUEUE_NAME, "rag_flow_svr_task_broker", "rag_flow_svr_task_consumer")
- if not payload:
- time.sleep(1)
- return pd.DataFrame()
- except Exception as e:
- cron_logger.error("Get task event from queue exception:" + str(e))
- return pd.DataFrame()
-
- msg = payload.get_message()
- payload.ack()
- if not msg: return pd.DataFrame()
-
- if TaskService.do_cancel(msg["id"]):
- cron_logger.info("Task {} has been canceled.".format(msg["id"]))
- return pd.DataFrame()
- tasks = TaskService.get_tasks(msg["id"])
- assert tasks, "{} empty task!".format(msg["id"])
- tasks = pd.DataFrame(tasks)
- return tasks
-
-
- def get_minio_binary(bucket, name):
- return MINIO.get(bucket, name)
-
-
- def build(row):
- if row["size"] > DOC_MAXIMUM_SIZE:
- set_progress(row["id"], prog=-1, msg="File size exceeds( <= %dMb )" %
- (int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
- return []
-
- callback = partial(
- set_progress,
- row["id"],
- row["from_page"],
- row["to_page"])
- chunker = FACTORY[row["parser_id"].lower()]
- try:
- st = timer()
- bucket, name = File2DocumentService.get_minio_address(doc_id=row["doc_id"])
- binary = get_minio_binary(bucket, name)
- cron_logger.info(
- "From minio({}) {}/{}".format(timer()-st, row["location"], row["name"]))
- cks = chunker.chunk(row["name"], binary=binary, from_page=row["from_page"],
- to_page=row["to_page"], lang=row["language"], callback=callback,
- kb_id=row["kb_id"], parser_config=row["parser_config"], tenant_id=row["tenant_id"])
- cron_logger.info(
- "Chunkking({}) {}/{}".format(timer()-st, row["location"], row["name"]))
- except TimeoutError as e:
- callback(-1, f"Internal server error: Fetch file timeout. Could you try it again.")
- cron_logger.error(
- "Chunkking {}/{}: Fetch file timeout.".format(row["location"], row["name"]))
- return
- except Exception as e:
- if re.search("(No such file|not found)", str(e)):
- callback(-1, "Can not find file <%s>" % row["name"])
- else:
- callback(-1, f"Internal server error: %s" %
- str(e).replace("'", ""))
- traceback.print_exc()
-
- cron_logger.error(
- "Chunkking {}/{}: {}".format(row["location"], row["name"], str(e)))
-
- return
-
- docs = []
- doc = {
- "doc_id": row["doc_id"],
- "kb_id": [str(row["kb_id"])]
- }
- el = 0
- for ck in cks:
- d = copy.deepcopy(doc)
- d.update(ck)
- md5 = hashlib.md5()
- md5.update((ck["content_with_weight"] +
- str(d["doc_id"])).encode("utf-8"))
- d["_id"] = md5.hexdigest()
- d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
- d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
- if not d.get("image"):
- docs.append(d)
- continue
-
- output_buffer = BytesIO()
- if isinstance(d["image"], bytes):
- output_buffer = BytesIO(d["image"])
- else:
- d["image"].save(output_buffer, format='JPEG')
-
- st = timer()
- MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue())
- el += timer() - st
- d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"])
- del d["image"]
- docs.append(d)
- cron_logger.info("MINIO PUT({}):{}".format(row["name"], el))
-
- return docs
-
-
- def init_kb(row):
- idxnm = search.index_name(row["tenant_id"])
- if ELASTICSEARCH.indexExist(idxnm):
- return
- return ELASTICSEARCH.createIdx(idxnm, json.load(
- open(os.path.join(get_project_base_directory(), "conf", "mapping.json"), "r")))
-
-
- def embedding(docs, mdl, parser_config={}, callback=None):
- batch_size = 32
- tts, cnts = [rmSpace(d["title_tks"]) for d in docs if d.get("title_tks")], [
- re.sub(r"</?(table|td|caption|tr|th)( [^<>]{0,12})?>", " ", d["content_with_weight"]) for d in docs]
- tk_count = 0
- if len(tts) == len(cnts):
- tts_ = np.array([])
- for i in range(0, len(tts), batch_size):
- vts, c = mdl.encode(tts[i: i + batch_size])
- if len(tts_) == 0:
- tts_ = vts
- else:
- tts_ = np.concatenate((tts_, vts), axis=0)
- tk_count += c
- callback(prog=0.6 + 0.1 * (i + 1) / len(tts), msg="")
- tts = tts_
-
- cnts_ = np.array([])
- for i in range(0, len(cnts), batch_size):
- vts, c = mdl.encode(cnts[i: i + batch_size])
- if len(cnts_) == 0:
- cnts_ = vts
- else:
- cnts_ = np.concatenate((cnts_, vts), axis=0)
- tk_count += c
- callback(prog=0.7 + 0.2 * (i + 1) / len(cnts), msg="")
- cnts = cnts_
-
- title_w = float(parser_config.get("filename_embd_weight", 0.1))
- vects = (title_w * tts + (1 - title_w) *
- cnts) if len(tts) == len(cnts) else cnts
-
- assert len(vects) == len(docs)
- for i, d in enumerate(docs):
- v = vects[i].tolist()
- d["q_%d_vec" % len(v)] = v
- return tk_count
-
-
- def main():
- rows = collect()
- if len(rows) == 0:
- return
-
- for _, r in rows.iterrows():
- callback = partial(set_progress, r["id"], r["from_page"], r["to_page"])
- try:
- embd_mdl = LLMBundle(r["tenant_id"], LLMType.EMBEDDING, llm_name=r["embd_id"], lang=r["language"])
- except Exception as e:
- callback(-1, msg=str(e))
- cron_logger.error(str(e))
- continue
-
- st = timer()
- cks = build(r)
- cron_logger.info("Build chunks({}): {}".format(r["name"], timer()-st))
- if cks is None:
- continue
- if not cks:
- callback(1., "No chunk! Done!")
- continue
- # TODO: exception handler
- ## set_progress(r["did"], -1, "ERROR: ")
- callback(
- msg="Finished slicing files(%d). Start to embedding the content." %
- len(cks))
- st = timer()
- try:
- tk_count = embedding(cks, embd_mdl, r["parser_config"], callback)
- except Exception as e:
- callback(-1, "Embedding error:{}".format(str(e)))
- cron_logger.error(str(e))
- tk_count = 0
- cron_logger.info("Embedding elapsed({}): {}".format(r["name"], timer()-st))
-
- callback(msg="Finished embedding({:.2f})! Start to build index!".format(timer()-st))
- init_kb(r)
- chunk_count = len(set([c["_id"] for c in cks]))
- st = timer()
- es_r = ""
- for b in range(0, len(cks), 32):
- es_r = ELASTICSEARCH.bulk(cks[b:b+32], search.index_name(r["tenant_id"]))
- if b % 128 == 0:
- callback(prog=0.8 + 0.1 * (b + 1) / len(cks), msg="")
-
- cron_logger.info("Indexing elapsed({}): {}".format(r["name"], timer()-st))
- if es_r:
- callback(-1, "Index failure!")
- ELASTICSEARCH.deleteByQuery(
- Q("match", doc_id=r["doc_id"]), idxnm=search.index_name(r["tenant_id"]))
- cron_logger.error(str(es_r))
- else:
- if TaskService.do_cancel(r["id"]):
- ELASTICSEARCH.deleteByQuery(
- Q("match", doc_id=r["doc_id"]), idxnm=search.index_name(r["tenant_id"]))
- continue
- callback(1., "Done!")
- DocumentService.increment_chunk_num(
- r["doc_id"], r["kb_id"], tk_count, chunk_count, 0)
- cron_logger.info(
- "Chunk doc({}), token({}), chunks({}), elapsed:{}".format(
- r["id"], tk_count, len(cks), timer()-st))
-
-
-
- if __name__ == "__main__":
- peewee_logger = logging.getLogger('peewee')
- peewee_logger.propagate = False
- peewee_logger.addHandler(database_logger.handlers[0])
- peewee_logger.setLevel(database_logger.level)
-
- while True:
- main()
|