選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

task_executor.py 11KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import datetime
  17. import json
  18. import logging
  19. import os
  20. import hashlib
  21. import copy
  22. import re
  23. import sys
  24. import time
  25. import traceback
  26. from functools import partial
  27. from api.db.services.file2document_service import File2DocumentService
  28. from rag.utils.minio_conn import MINIO
  29. from api.db.db_models import close_connection
  30. from rag.settings import database_logger, SVR_QUEUE_NAME
  31. from rag.settings import cron_logger, DOC_MAXIMUM_SIZE
  32. from multiprocessing import Pool
  33. import numpy as np
  34. from elasticsearch_dsl import Q
  35. from multiprocessing.context import TimeoutError
  36. from api.db.services.task_service import TaskService
  37. from rag.utils.es_conn import ELASTICSEARCH
  38. from timeit import default_timer as timer
  39. from rag.utils import rmSpace, findMaxTm
  40. from rag.nlp import search
  41. from io import BytesIO
  42. import pandas as pd
  43. from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture, naive, one
  44. from api.db import LLMType, ParserType
  45. from api.db.services.document_service import DocumentService
  46. from api.db.services.llm_service import LLMBundle
  47. from api.utils.file_utils import get_project_base_directory
  48. from rag.utils.redis_conn import REDIS_CONN
  49. BATCH_SIZE = 64
  50. FACTORY = {
  51. "general": naive,
  52. ParserType.NAIVE.value: naive,
  53. ParserType.PAPER.value: paper,
  54. ParserType.BOOK.value: book,
  55. ParserType.PRESENTATION.value: presentation,
  56. ParserType.MANUAL.value: manual,
  57. ParserType.LAWS.value: laws,
  58. ParserType.QA.value: qa,
  59. ParserType.TABLE.value: table,
  60. ParserType.RESUME.value: resume,
  61. ParserType.PICTURE.value: picture,
  62. ParserType.ONE.value: one,
  63. }
  64. def set_progress(task_id, from_page=0, to_page=-1,
  65. prog=None, msg="Processing..."):
  66. if prog is not None and prog < 0:
  67. msg = "[ERROR]" + msg
  68. cancel = TaskService.do_cancel(task_id)
  69. if cancel:
  70. msg += " [Canceled]"
  71. prog = -1
  72. if to_page > 0:
  73. if msg:
  74. msg = f"Page({from_page+1}~{to_page+1}): " + msg
  75. d = {"progress_msg": msg}
  76. if prog is not None:
  77. d["progress"] = prog
  78. try:
  79. TaskService.update_progress(task_id, d)
  80. except Exception as e:
  81. cron_logger.error("set_progress:({}), {}".format(task_id, str(e)))
  82. close_connection()
  83. if cancel:
  84. sys.exit()
  85. def collect():
  86. try:
  87. payload = REDIS_CONN.queue_consumer(SVR_QUEUE_NAME, "rag_flow_svr_task_broker", "rag_flow_svr_task_consumer")
  88. if not payload:
  89. time.sleep(1)
  90. return pd.DataFrame()
  91. except Exception as e:
  92. cron_logger.error("Get task event from queue exception:" + str(e))
  93. return pd.DataFrame()
  94. msg = payload.get_message()
  95. payload.ack()
  96. if not msg: return pd.DataFrame()
  97. if TaskService.do_cancel(msg["id"]):
  98. cron_logger.info("Task {} has been canceled.".format(msg["id"]))
  99. return pd.DataFrame()
  100. tasks = TaskService.get_tasks(msg["id"])
  101. assert tasks, "{} empty task!".format(msg["id"])
  102. tasks = pd.DataFrame(tasks)
  103. return tasks
  104. def get_minio_binary(bucket, name):
  105. return MINIO.get(bucket, name)
  106. def build(row):
  107. if row["size"] > DOC_MAXIMUM_SIZE:
  108. set_progress(row["id"], prog=-1, msg="File size exceeds( <= %dMb )" %
  109. (int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
  110. return []
  111. callback = partial(
  112. set_progress,
  113. row["id"],
  114. row["from_page"],
  115. row["to_page"])
  116. chunker = FACTORY[row["parser_id"].lower()]
  117. try:
  118. st = timer()
  119. bucket, name = File2DocumentService.get_minio_address(doc_id=row["doc_id"])
  120. binary = get_minio_binary(bucket, name)
  121. cron_logger.info(
  122. "From minio({}) {}/{}".format(timer()-st, row["location"], row["name"]))
  123. cks = chunker.chunk(row["name"], binary=binary, from_page=row["from_page"],
  124. to_page=row["to_page"], lang=row["language"], callback=callback,
  125. kb_id=row["kb_id"], parser_config=row["parser_config"], tenant_id=row["tenant_id"])
  126. cron_logger.info(
  127. "Chunkking({}) {}/{}".format(timer()-st, row["location"], row["name"]))
  128. except TimeoutError as e:
  129. callback(-1, f"Internal server error: Fetch file timeout. Could you try it again.")
  130. cron_logger.error(
  131. "Chunkking {}/{}: Fetch file timeout.".format(row["location"], row["name"]))
  132. return
  133. except Exception as e:
  134. if re.search("(No such file|not found)", str(e)):
  135. callback(-1, "Can not find file <%s>" % row["name"])
  136. else:
  137. callback(-1, f"Internal server error: %s" %
  138. str(e).replace("'", ""))
  139. traceback.print_exc()
  140. cron_logger.error(
  141. "Chunkking {}/{}: {}".format(row["location"], row["name"], str(e)))
  142. return
  143. docs = []
  144. doc = {
  145. "doc_id": row["doc_id"],
  146. "kb_id": [str(row["kb_id"])]
  147. }
  148. el = 0
  149. for ck in cks:
  150. d = copy.deepcopy(doc)
  151. d.update(ck)
  152. md5 = hashlib.md5()
  153. md5.update((ck["content_with_weight"] +
  154. str(d["doc_id"])).encode("utf-8"))
  155. d["_id"] = md5.hexdigest()
  156. d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
  157. d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
  158. if not d.get("image"):
  159. docs.append(d)
  160. continue
  161. output_buffer = BytesIO()
  162. if isinstance(d["image"], bytes):
  163. output_buffer = BytesIO(d["image"])
  164. else:
  165. d["image"].save(output_buffer, format='JPEG')
  166. st = timer()
  167. MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue())
  168. el += timer() - st
  169. d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"])
  170. del d["image"]
  171. docs.append(d)
  172. cron_logger.info("MINIO PUT({}):{}".format(row["name"], el))
  173. return docs
  174. def init_kb(row):
  175. idxnm = search.index_name(row["tenant_id"])
  176. if ELASTICSEARCH.indexExist(idxnm):
  177. return
  178. return ELASTICSEARCH.createIdx(idxnm, json.load(
  179. open(os.path.join(get_project_base_directory(), "conf", "mapping.json"), "r")))
  180. def embedding(docs, mdl, parser_config={}, callback=None):
  181. batch_size = 32
  182. tts, cnts = [rmSpace(d["title_tks"]) for d in docs if d.get("title_tks")], [
  183. re.sub(r"</?(table|td|caption|tr|th)( [^<>]{0,12})?>", " ", d["content_with_weight"]) for d in docs]
  184. tk_count = 0
  185. if len(tts) == len(cnts):
  186. tts_ = np.array([])
  187. for i in range(0, len(tts), batch_size):
  188. vts, c = mdl.encode(tts[i: i + batch_size])
  189. if len(tts_) == 0:
  190. tts_ = vts
  191. else:
  192. tts_ = np.concatenate((tts_, vts), axis=0)
  193. tk_count += c
  194. callback(prog=0.6 + 0.1 * (i + 1) / len(tts), msg="")
  195. tts = tts_
  196. cnts_ = np.array([])
  197. for i in range(0, len(cnts), batch_size):
  198. vts, c = mdl.encode(cnts[i: i + batch_size])
  199. if len(cnts_) == 0:
  200. cnts_ = vts
  201. else:
  202. cnts_ = np.concatenate((cnts_, vts), axis=0)
  203. tk_count += c
  204. callback(prog=0.7 + 0.2 * (i + 1) / len(cnts), msg="")
  205. cnts = cnts_
  206. title_w = float(parser_config.get("filename_embd_weight", 0.1))
  207. vects = (title_w * tts + (1 - title_w) *
  208. cnts) if len(tts) == len(cnts) else cnts
  209. assert len(vects) == len(docs)
  210. for i, d in enumerate(docs):
  211. v = vects[i].tolist()
  212. d["q_%d_vec" % len(v)] = v
  213. return tk_count
  214. def main():
  215. rows = collect()
  216. if len(rows) == 0:
  217. return
  218. for _, r in rows.iterrows():
  219. callback = partial(set_progress, r["id"], r["from_page"], r["to_page"])
  220. try:
  221. embd_mdl = LLMBundle(r["tenant_id"], LLMType.EMBEDDING, llm_name=r["embd_id"], lang=r["language"])
  222. except Exception as e:
  223. callback(-1, msg=str(e))
  224. cron_logger.error(str(e))
  225. continue
  226. st = timer()
  227. cks = build(r)
  228. cron_logger.info("Build chunks({}): {}".format(r["name"], timer()-st))
  229. if cks is None:
  230. continue
  231. if not cks:
  232. callback(1., "No chunk! Done!")
  233. continue
  234. # TODO: exception handler
  235. ## set_progress(r["did"], -1, "ERROR: ")
  236. callback(
  237. msg="Finished slicing files(%d). Start to embedding the content." %
  238. len(cks))
  239. st = timer()
  240. try:
  241. tk_count = embedding(cks, embd_mdl, r["parser_config"], callback)
  242. except Exception as e:
  243. callback(-1, "Embedding error:{}".format(str(e)))
  244. cron_logger.error(str(e))
  245. tk_count = 0
  246. cron_logger.info("Embedding elapsed({}): {}".format(r["name"], timer()-st))
  247. callback(msg="Finished embedding({:.2f})! Start to build index!".format(timer()-st))
  248. init_kb(r)
  249. chunk_count = len(set([c["_id"] for c in cks]))
  250. st = timer()
  251. es_r = ""
  252. for b in range(0, len(cks), 32):
  253. es_r = ELASTICSEARCH.bulk(cks[b:b+32], search.index_name(r["tenant_id"]))
  254. if b % 128 == 0:
  255. callback(prog=0.8 + 0.1 * (b + 1) / len(cks), msg="")
  256. cron_logger.info("Indexing elapsed({}): {}".format(r["name"], timer()-st))
  257. if es_r:
  258. callback(-1, "Index failure!")
  259. ELASTICSEARCH.deleteByQuery(
  260. Q("match", doc_id=r["doc_id"]), idxnm=search.index_name(r["tenant_id"]))
  261. cron_logger.error(str(es_r))
  262. else:
  263. if TaskService.do_cancel(r["id"]):
  264. ELASTICSEARCH.deleteByQuery(
  265. Q("match", doc_id=r["doc_id"]), idxnm=search.index_name(r["tenant_id"]))
  266. continue
  267. callback(1., "Done!")
  268. DocumentService.increment_chunk_num(
  269. r["doc_id"], r["kb_id"], tk_count, chunk_count, 0)
  270. cron_logger.info(
  271. "Chunk doc({}), token({}), chunks({}), elapsed:{}".format(
  272. r["id"], tk_count, len(cks), timer()-st))
  273. if __name__ == "__main__":
  274. peewee_logger = logging.getLogger('peewee')
  275. peewee_logger.propagate = False
  276. peewee_logger.addHandler(database_logger.handlers[0])
  277. peewee_logger.setLevel(database_logger.level)
  278. while True:
  279. main()