| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185 | 
							- #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - from tika import parser
 - from io import BytesIO
 - from docx import Document
 - from timeit import default_timer as timer
 - import re
 - from deepdoc.parser.pdf_parser import PlainParser
 - from rag.nlp import rag_tokenizer, naive_merge, tokenize_table, tokenize_chunks, find_codec
 - from deepdoc.parser import PdfParser, ExcelParser, DocxParser
 - from rag.settings import cron_logger
 - 
 - class Docx(DocxParser):
 -     def __init__(self):
 -         pass
 - 
 -     def __clean(self, line):
 -         line = re.sub(r"\u3000", " ", line).strip()
 -         return line
 - 
 -     def __call__(self, filename, binary=None, from_page=0, to_page=100000):
 -         self.doc = Document(
 -             filename) if not binary else Document(BytesIO(binary))
 -         pn = 0
 -         lines = []
 -         for p in self.doc.paragraphs:
 -             if pn > to_page:
 -                 break
 -             if from_page <= pn < to_page and p.text.strip():
 -                 lines.append(self.__clean(p.text))
 -             for run in p.runs:
 -                 if 'lastRenderedPageBreak' in run._element.xml:
 -                     pn += 1
 -                     continue
 -                 if 'w:br' in run._element.xml and 'type="page"' in run._element.xml:
 -                     pn += 1
 -         tbls = []
 -         for tb in self.doc.tables:
 -             html= "<table>"
 -             for r in tb.rows:
 -                 html += "<tr>"
 -                 i = 0
 -                 while i < len(r.cells):
 -                     span = 1
 -                     c = r.cells[i]
 -                     for j in range(i+1, len(r.cells)):
 -                         if c.text == r.cells[j].text:
 -                             span += 1
 -                             i = j
 -                     i += 1
 -                     html += f"<td>{c.text}</td>" if span == 1 else f"<td colspan='{span}'>{c.text}</td>"
 -                 html += "</tr>"
 -             html += "</table>"
 -             tbls.append(((None, html), ""))
 -         return [(l, "") for l in lines if l], tbls
 - 
 - 
 - class Pdf(PdfParser):
 -     def __call__(self, filename, binary=None, from_page=0,
 -                  to_page=100000, zoomin=3, callback=None):
 -         start = timer()
 -         callback(msg="OCR is running...")
 -         self.__images__(
 -             filename if not binary else binary,
 -             zoomin,
 -             from_page,
 -             to_page,
 -             callback
 -         )
 -         callback(msg="OCR finished")
 -         cron_logger.info("OCR({}~{}): {}".format(from_page, to_page, timer() - start))
 - 
 -         start = timer()
 -         self._layouts_rec(zoomin)
 -         callback(0.63, "Layout analysis finished.")
 -         self._table_transformer_job(zoomin)
 -         callback(0.65, "Table analysis finished.")
 -         self._text_merge()
 -         callback(0.67, "Text merging finished")
 -         tbls = self._extract_table_figure(True, zoomin, True, True)
 -         #self._naive_vertical_merge()
 -         self._concat_downward()
 -         #self._filter_forpages()
 - 
 -         cron_logger.info("layouts: {}".format(timer() - start))
 -         return [(b["text"], self._line_tag(b, zoomin))
 -                 for b in self.boxes], tbls
 - 
 - 
 - def chunk(filename, binary=None, from_page=0, to_page=100000,
 -           lang="Chinese", callback=None, **kwargs):
 -     """
 -         Supported file formats are docx, pdf, excel, txt.
 -         This method apply the naive ways to chunk files.
 -         Successive text will be sliced into pieces using 'delimiter'.
 -         Next, these successive pieces are merge into chunks whose token number is no more than 'Max token number'.
 -     """
 - 
 -     eng = lang.lower() == "english"  # is_english(cks)
 -     parser_config = kwargs.get(
 -         "parser_config", {
 -             "chunk_token_num": 128, "delimiter": "\n!?。;!?", "layout_recognize": True})
 -     doc = {
 -         "docnm_kwd": filename,
 -         "title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename))
 -     }
 -     doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
 -     res = []
 -     pdf_parser = None
 -     sections = []
 -     if re.search(r"\.docx$", filename, re.IGNORECASE):
 -         callback(0.1, "Start to parse.")
 -         sections, tbls = Docx()(filename, binary)
 -         res = tokenize_table(tbls, doc, eng)
 -         callback(0.8, "Finish parsing.")
 - 
 -     elif re.search(r"\.pdf$", filename, re.IGNORECASE):
 -         pdf_parser = Pdf(
 -         ) if parser_config.get("layout_recognize", True) else PlainParser()
 -         sections, tbls = pdf_parser(filename if not binary else binary,
 -                                     from_page=from_page, to_page=to_page, callback=callback)
 -         res = tokenize_table(tbls, doc, eng)
 - 
 -     elif re.search(r"\.xlsx?$", filename, re.IGNORECASE):
 -         callback(0.1, "Start to parse.")
 -         excel_parser = ExcelParser()
 -         sections = [(excel_parser.html(binary), "")]
 - 
 -     elif re.search(r"\.(txt|md)$", filename, re.IGNORECASE):
 -         callback(0.1, "Start to parse.")
 -         txt = ""
 -         if binary:
 -             encoding = find_codec(binary)
 -             txt = binary.decode(encoding, errors="ignore")
 -         else:
 -             with open(filename, "r") as f:
 -                 while True:
 -                     l = f.readline()
 -                     if not l:
 -                         break
 -                     txt += l
 -         sections = txt.split("\n")
 -         sections = [(l, "") for l in sections if l]
 -         callback(0.8, "Finish parsing.")
 - 
 -     elif re.search(r"\.doc$", filename, re.IGNORECASE):
 -         callback(0.1, "Start to parse.")
 -         binary = BytesIO(binary)
 -         doc_parsed = parser.from_buffer(binary)
 -         sections = doc_parsed['content'].split('\n')
 -         sections = [(l, "") for l in sections if l]
 -         callback(0.8, "Finish parsing.")
 - 
 -     else:
 -         raise NotImplementedError(
 -             "file type not supported yet(doc, docx, pdf, txt supported)")
 - 
 -     st = timer()
 -     chunks = naive_merge(
 -         sections, parser_config.get(
 -             "chunk_token_num", 128), parser_config.get(
 -             "delimiter", "\n!?。;!?"))
 - 
 -     res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser))
 -     cron_logger.info("naive_merge({}): {}".format(filename, timer() - st))
 -     return res
 - 
 - 
 - if __name__ == "__main__":
 -     import sys
 - 
 -     def dummy(prog=None, msg=""):
 -         pass
 - 
 -     chunk(sys.argv[1], from_page=0, to_page=10, callback=dummy)
 
 
  |