You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

llm_service.py 19KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import logging
  17. import re
  18. from functools import partial
  19. from typing import Generator
  20. from langfuse import Langfuse
  21. from api import settings
  22. from api.db import LLMType
  23. from api.db.db_models import DB, LLM, LLMFactories, TenantLLM
  24. from api.db.services.common_service import CommonService
  25. from api.db.services.langfuse_service import TenantLangfuseService
  26. from api.db.services.user_service import TenantService
  27. from rag.llm import ChatModel, CvModel, EmbeddingModel, RerankModel, Seq2txtModel, TTSModel
  28. class LLMFactoriesService(CommonService):
  29. model = LLMFactories
  30. class LLMService(CommonService):
  31. model = LLM
  32. class TenantLLMService(CommonService):
  33. model = TenantLLM
  34. @classmethod
  35. @DB.connection_context()
  36. def get_api_key(cls, tenant_id, model_name):
  37. mdlnm, fid = TenantLLMService.split_model_name_and_factory(model_name)
  38. if not fid:
  39. objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm)
  40. else:
  41. objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm, llm_factory=fid)
  42. if (not objs) and fid:
  43. if fid == "LocalAI":
  44. mdlnm += "___LocalAI"
  45. elif fid == "HuggingFace":
  46. mdlnm += "___HuggingFace"
  47. elif fid == "OpenAI-API-Compatible":
  48. mdlnm += "___OpenAI-API"
  49. elif fid == "VLLM":
  50. mdlnm += "___VLLM"
  51. objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm, llm_factory=fid)
  52. if not objs:
  53. return
  54. return objs[0]
  55. @classmethod
  56. @DB.connection_context()
  57. def get_my_llms(cls, tenant_id):
  58. fields = [cls.model.llm_factory, LLMFactories.logo, LLMFactories.tags, cls.model.model_type, cls.model.llm_name, cls.model.used_tokens]
  59. objs = cls.model.select(*fields).join(LLMFactories, on=(cls.model.llm_factory == LLMFactories.name)).where(cls.model.tenant_id == tenant_id, ~cls.model.api_key.is_null()).dicts()
  60. return list(objs)
  61. @staticmethod
  62. def split_model_name_and_factory(model_name):
  63. arr = model_name.split("@")
  64. if len(arr) < 2:
  65. return model_name, None
  66. if len(arr) > 2:
  67. return "@".join(arr[0:-1]), arr[-1]
  68. # model name must be xxx@yyy
  69. try:
  70. model_factories = settings.FACTORY_LLM_INFOS
  71. model_providers = set([f["name"] for f in model_factories])
  72. if arr[-1] not in model_providers:
  73. return model_name, None
  74. return arr[0], arr[-1]
  75. except Exception as e:
  76. logging.exception(f"TenantLLMService.split_model_name_and_factory got exception: {e}")
  77. return model_name, None
  78. @classmethod
  79. @DB.connection_context()
  80. def get_model_config(cls, tenant_id, llm_type, llm_name=None):
  81. e, tenant = TenantService.get_by_id(tenant_id)
  82. if not e:
  83. raise LookupError("Tenant not found")
  84. if llm_type == LLMType.EMBEDDING.value:
  85. mdlnm = tenant.embd_id if not llm_name else llm_name
  86. elif llm_type == LLMType.SPEECH2TEXT.value:
  87. mdlnm = tenant.asr_id
  88. elif llm_type == LLMType.IMAGE2TEXT.value:
  89. mdlnm = tenant.img2txt_id if not llm_name else llm_name
  90. elif llm_type == LLMType.CHAT.value:
  91. mdlnm = tenant.llm_id if not llm_name else llm_name
  92. elif llm_type == LLMType.RERANK:
  93. mdlnm = tenant.rerank_id if not llm_name else llm_name
  94. elif llm_type == LLMType.TTS:
  95. mdlnm = tenant.tts_id if not llm_name else llm_name
  96. else:
  97. assert False, "LLM type error"
  98. model_config = cls.get_api_key(tenant_id, mdlnm)
  99. mdlnm, fid = TenantLLMService.split_model_name_and_factory(mdlnm)
  100. if not model_config: # for some cases seems fid mismatch
  101. model_config = cls.get_api_key(tenant_id, mdlnm)
  102. if model_config:
  103. model_config = model_config.to_dict()
  104. llm = LLMService.query(llm_name=mdlnm) if not fid else LLMService.query(llm_name=mdlnm, fid=fid)
  105. if not llm and fid: # for some cases seems fid mismatch
  106. llm = LLMService.query(llm_name=mdlnm)
  107. if llm:
  108. model_config["is_tools"] = llm[0].is_tools
  109. if not model_config:
  110. if llm_type in [LLMType.EMBEDDING, LLMType.RERANK]:
  111. llm = LLMService.query(llm_name=mdlnm) if not fid else LLMService.query(llm_name=mdlnm, fid=fid)
  112. if llm and llm[0].fid in ["Youdao", "FastEmbed", "BAAI"]:
  113. model_config = {"llm_factory": llm[0].fid, "api_key": "", "llm_name": mdlnm, "api_base": ""}
  114. if not model_config:
  115. if mdlnm == "flag-embedding":
  116. model_config = {"llm_factory": "Tongyi-Qianwen", "api_key": "", "llm_name": llm_name, "api_base": ""}
  117. else:
  118. if not mdlnm:
  119. raise LookupError(f"Type of {llm_type} model is not set.")
  120. raise LookupError("Model({}) not authorized".format(mdlnm))
  121. return model_config
  122. @classmethod
  123. @DB.connection_context()
  124. def model_instance(cls, tenant_id, llm_type, llm_name=None, lang="Chinese", **kwargs):
  125. model_config = TenantLLMService.get_model_config(tenant_id, llm_type, llm_name)
  126. if llm_type == LLMType.EMBEDDING.value:
  127. if model_config["llm_factory"] not in EmbeddingModel:
  128. return
  129. return EmbeddingModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
  130. if llm_type == LLMType.RERANK:
  131. if model_config["llm_factory"] not in RerankModel:
  132. return
  133. return RerankModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
  134. if llm_type == LLMType.IMAGE2TEXT.value:
  135. if model_config["llm_factory"] not in CvModel:
  136. return
  137. return CvModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], lang, base_url=model_config["api_base"], **kwargs)
  138. if llm_type == LLMType.CHAT.value:
  139. if model_config["llm_factory"] not in ChatModel:
  140. return
  141. return ChatModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"], **kwargs)
  142. if llm_type == LLMType.SPEECH2TEXT:
  143. if model_config["llm_factory"] not in Seq2txtModel:
  144. return
  145. return Seq2txtModel[model_config["llm_factory"]](key=model_config["api_key"], model_name=model_config["llm_name"], lang=lang, base_url=model_config["api_base"])
  146. if llm_type == LLMType.TTS:
  147. if model_config["llm_factory"] not in TTSModel:
  148. return
  149. return TTSModel[model_config["llm_factory"]](
  150. model_config["api_key"],
  151. model_config["llm_name"],
  152. base_url=model_config["api_base"],
  153. )
  154. @classmethod
  155. @DB.connection_context()
  156. def increase_usage(cls, tenant_id, llm_type, used_tokens, llm_name=None):
  157. e, tenant = TenantService.get_by_id(tenant_id)
  158. if not e:
  159. logging.error(f"Tenant not found: {tenant_id}")
  160. return 0
  161. llm_map = {
  162. LLMType.EMBEDDING.value: tenant.embd_id if not llm_name else llm_name,
  163. LLMType.SPEECH2TEXT.value: tenant.asr_id,
  164. LLMType.IMAGE2TEXT.value: tenant.img2txt_id,
  165. LLMType.CHAT.value: tenant.llm_id if not llm_name else llm_name,
  166. LLMType.RERANK.value: tenant.rerank_id if not llm_name else llm_name,
  167. LLMType.TTS.value: tenant.tts_id if not llm_name else llm_name,
  168. }
  169. mdlnm = llm_map.get(llm_type)
  170. if mdlnm is None:
  171. logging.error(f"LLM type error: {llm_type}")
  172. return 0
  173. llm_name, llm_factory = TenantLLMService.split_model_name_and_factory(mdlnm)
  174. try:
  175. num = (
  176. cls.model.update(used_tokens=cls.model.used_tokens + used_tokens)
  177. .where(cls.model.tenant_id == tenant_id, cls.model.llm_name == llm_name, cls.model.llm_factory == llm_factory if llm_factory else True)
  178. .execute()
  179. )
  180. except Exception:
  181. logging.exception("TenantLLMService.increase_usage got exception,Failed to update used_tokens for tenant_id=%s, llm_name=%s", tenant_id, llm_name)
  182. return 0
  183. return num
  184. @classmethod
  185. @DB.connection_context()
  186. def get_openai_models(cls):
  187. objs = cls.model.select().where((cls.model.llm_factory == "OpenAI"), ~(cls.model.llm_name == "text-embedding-3-small"), ~(cls.model.llm_name == "text-embedding-3-large")).dicts()
  188. return list(objs)
  189. @staticmethod
  190. def llm_id2llm_type(llm_id: str) -> str | None:
  191. llm_id, *_ = TenantLLMService.split_model_name_and_factory(llm_id)
  192. llm_factories = settings.FACTORY_LLM_INFOS
  193. for llm_factory in llm_factories:
  194. for llm in llm_factory["llm"]:
  195. if llm_id == llm["llm_name"]:
  196. return llm["model_type"].split(",")[-1]
  197. for llm in LLMService.query(llm_name=llm_id):
  198. return llm.model_type
  199. class LLMBundle:
  200. def __init__(self, tenant_id, llm_type, llm_name=None, lang="Chinese", **kwargs):
  201. self.tenant_id = tenant_id
  202. self.llm_type = llm_type
  203. self.llm_name = llm_name
  204. self.mdl = TenantLLMService.model_instance(tenant_id, llm_type, llm_name, lang=lang, **kwargs)
  205. assert self.mdl, "Can't find model for {}/{}/{}".format(tenant_id, llm_type, llm_name)
  206. model_config = TenantLLMService.get_model_config(tenant_id, llm_type, llm_name)
  207. self.max_length = model_config.get("max_tokens", 8192)
  208. self.is_tools = model_config.get("is_tools", False)
  209. self.verbose_tool_use = kwargs.get("verbose_tool_use")
  210. langfuse_keys = TenantLangfuseService.filter_by_tenant(tenant_id=tenant_id)
  211. self.langfuse = None
  212. if langfuse_keys:
  213. langfuse = Langfuse(public_key=langfuse_keys.public_key, secret_key=langfuse_keys.secret_key, host=langfuse_keys.host)
  214. if langfuse.auth_check():
  215. self.langfuse = langfuse
  216. trace_id = self.langfuse.create_trace_id()
  217. self.trace_context = {"trace_id": trace_id}
  218. def bind_tools(self, toolcall_session, tools):
  219. if not self.is_tools:
  220. logging.warning(f"Model {self.llm_name} does not support tool call, but you have assigned one or more tools to it!")
  221. return
  222. self.mdl.bind_tools(toolcall_session, tools)
  223. def encode(self, texts: list):
  224. if self.langfuse:
  225. generation = self.langfuse.start_generation(trace_context=self.trace_context, name="encode", model=self.llm_name, input={"texts": texts})
  226. embeddings, used_tokens = self.mdl.encode(texts)
  227. llm_name = getattr(self, "llm_name", None)
  228. if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens, llm_name):
  229. logging.error("LLMBundle.encode can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
  230. if self.langfuse:
  231. generation.update(usage_details={"total_tokens": used_tokens})
  232. generation.end()
  233. return embeddings, used_tokens
  234. def encode_queries(self, query: str):
  235. if self.langfuse:
  236. generation = self.langfuse.start_generation(trace_context=self.trace_context, name="encode_queries", model=self.llm_name, input={"query": query})
  237. emd, used_tokens = self.mdl.encode_queries(query)
  238. llm_name = getattr(self, "llm_name", None)
  239. if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens, llm_name):
  240. logging.error("LLMBundle.encode_queries can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
  241. if self.langfuse:
  242. generation.update(usage_details={"total_tokens": used_tokens})
  243. generation.end()
  244. return emd, used_tokens
  245. def similarity(self, query: str, texts: list):
  246. if self.langfuse:
  247. generation = self.langfuse.start_generation(trace_context=self.trace_context, name="similarity", model=self.llm_name, input={"query": query, "texts": texts})
  248. sim, used_tokens = self.mdl.similarity(query, texts)
  249. if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
  250. logging.error("LLMBundle.similarity can't update token usage for {}/RERANK used_tokens: {}".format(self.tenant_id, used_tokens))
  251. if self.langfuse:
  252. generation.update(usage_details={"total_tokens": used_tokens})
  253. generation.end()
  254. return sim, used_tokens
  255. def describe(self, image, max_tokens=300):
  256. if self.langfuse:
  257. generation = self.langfuse.start_generation(trace_context=self.trace_context, name="describe", metadata={"model": self.llm_name})
  258. txt, used_tokens = self.mdl.describe(image)
  259. if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
  260. logging.error("LLMBundle.describe can't update token usage for {}/IMAGE2TEXT used_tokens: {}".format(self.tenant_id, used_tokens))
  261. if self.langfuse:
  262. generation.update(output={"output": txt}, usage_details={"total_tokens": used_tokens})
  263. generation.end()
  264. return txt
  265. def describe_with_prompt(self, image, prompt):
  266. if self.langfuse:
  267. generation = self.language.start_generation(trace_context=self.trace_context, name="describe_with_prompt", metadata={"model": self.llm_name, "prompt": prompt})
  268. txt, used_tokens = self.mdl.describe_with_prompt(image, prompt)
  269. if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
  270. logging.error("LLMBundle.describe can't update token usage for {}/IMAGE2TEXT used_tokens: {}".format(self.tenant_id, used_tokens))
  271. if self.langfuse:
  272. generation.update(output={"output": txt}, usage_details={"total_tokens": used_tokens})
  273. generation.end()
  274. return txt
  275. def transcription(self, audio):
  276. if self.langfuse:
  277. generation = self.langfuse.start_generation(trace_context=self.trace_context, name="transcription", metadata={"model": self.llm_name})
  278. txt, used_tokens = self.mdl.transcription(audio)
  279. if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
  280. logging.error("LLMBundle.transcription can't update token usage for {}/SEQUENCE2TXT used_tokens: {}".format(self.tenant_id, used_tokens))
  281. if self.langfuse:
  282. generation.update(output={"output": txt}, usage_details={"total_tokens": used_tokens})
  283. generation.end()
  284. return txt
  285. def tts(self, text: str) -> Generator[bytes, None, None]:
  286. if self.langfuse:
  287. generation = self.langfuse.start_generation(trace_context=self.trace_context, name="tts", input={"text": text})
  288. for chunk in self.mdl.tts(text):
  289. if isinstance(chunk, int):
  290. if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, chunk, self.llm_name):
  291. logging.error("LLMBundle.tts can't update token usage for {}/TTS".format(self.tenant_id))
  292. return
  293. yield chunk
  294. if self.langfuse:
  295. generation.end()
  296. def _remove_reasoning_content(self, txt: str) -> str:
  297. first_think_start = txt.find("<think>")
  298. if first_think_start == -1:
  299. return txt
  300. last_think_end = txt.rfind("</think>")
  301. if last_think_end == -1:
  302. return txt
  303. if last_think_end < first_think_start:
  304. return txt
  305. return txt[last_think_end + len("</think>") :]
  306. def chat(self, system: str, history: list, gen_conf: dict = {}, **kwargs) -> str:
  307. if self.langfuse:
  308. generation = self.langfuse.start_generation(trace_context=self.trace_context, name="chat", model=self.llm_name, input={"system": system, "history": history})
  309. chat_partial = partial(self.mdl.chat, system, history, gen_conf)
  310. if self.is_tools and self.mdl.is_tools:
  311. chat_partial = partial(self.mdl.chat_with_tools, system, history, gen_conf)
  312. txt, used_tokens = chat_partial(**kwargs)
  313. txt = self._remove_reasoning_content(txt)
  314. if not self.verbose_tool_use:
  315. txt = re.sub(r"<tool_call>.*?</tool_call>", "", txt, flags=re.DOTALL)
  316. if isinstance(txt, int) and not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens, self.llm_name):
  317. logging.error("LLMBundle.chat can't update token usage for {}/CHAT llm_name: {}, used_tokens: {}".format(self.tenant_id, self.llm_name, used_tokens))
  318. if self.langfuse:
  319. generation.update(output={"output": txt}, usage_details={"total_tokens": used_tokens})
  320. generation.end()
  321. return txt
  322. def chat_streamly(self, system: str, history: list, gen_conf: dict = {}, **kwargs):
  323. if self.langfuse:
  324. generation = self.langfuse.start_generation(trace_context=self.trace_context, name="chat_streamly", model=self.llm_name, input={"system": system, "history": history})
  325. ans = ""
  326. chat_partial = partial(self.mdl.chat_streamly, system, history, gen_conf)
  327. total_tokens = 0
  328. if self.is_tools and self.mdl.is_tools:
  329. chat_partial = partial(self.mdl.chat_streamly_with_tools, system, history, gen_conf)
  330. for txt in chat_partial(**kwargs):
  331. if isinstance(txt, int):
  332. total_tokens = txt
  333. if self.langfuse:
  334. generation.update(output={"output": ans})
  335. generation.end()
  336. break
  337. if txt.endswith("</think>"):
  338. ans = ans.rstrip("</think>")
  339. if not self.verbose_tool_use:
  340. txt = re.sub(r"<tool_call>.*?</tool_call>", "", txt, flags=re.DOTALL)
  341. ans += txt
  342. yield ans
  343. if total_tokens > 0:
  344. if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, txt, self.llm_name):
  345. logging.error("LLMBundle.chat_streamly can't update token usage for {}/CHAT llm_name: {}, content: {}".format(self.tenant_id, self.llm_name, txt))