您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

canvas_service.py 15KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import json
  17. import logging
  18. import time
  19. import traceback
  20. from uuid import uuid4
  21. from agent.canvas import Canvas
  22. from api.db import TenantPermission
  23. from api.db.db_models import DB, CanvasTemplate, User, UserCanvas, API4Conversation
  24. from api.db.services.api_service import API4ConversationService
  25. from api.db.services.common_service import CommonService
  26. from api.utils import get_uuid
  27. from api.utils.api_utils import get_data_openai
  28. import tiktoken
  29. from peewee import fn
  30. class CanvasTemplateService(CommonService):
  31. model = CanvasTemplate
  32. class UserCanvasService(CommonService):
  33. model = UserCanvas
  34. @classmethod
  35. @DB.connection_context()
  36. def get_list(cls, tenant_id,
  37. page_number, items_per_page, orderby, desc, id, title):
  38. agents = cls.model.select()
  39. if id:
  40. agents = agents.where(cls.model.id == id)
  41. if title:
  42. agents = agents.where(cls.model.title == title)
  43. agents = agents.where(cls.model.user_id == tenant_id)
  44. if desc:
  45. agents = agents.order_by(cls.model.getter_by(orderby).desc())
  46. else:
  47. agents = agents.order_by(cls.model.getter_by(orderby).asc())
  48. agents = agents.paginate(page_number, items_per_page)
  49. return list(agents.dicts())
  50. @classmethod
  51. @DB.connection_context()
  52. def get_by_tenant_id(cls, pid):
  53. try:
  54. fields = [
  55. cls.model.id,
  56. cls.model.avatar,
  57. cls.model.title,
  58. cls.model.dsl,
  59. cls.model.description,
  60. cls.model.permission,
  61. cls.model.update_time,
  62. cls.model.user_id,
  63. cls.model.create_time,
  64. cls.model.create_date,
  65. cls.model.update_date,
  66. User.nickname,
  67. User.avatar.alias('tenant_avatar'),
  68. ]
  69. agents = cls.model.select(*fields) \
  70. .join(User, on=(cls.model.user_id == User.id)) \
  71. .where(cls.model.id == pid)
  72. # obj = cls.model.query(id=pid)[0]
  73. return True, agents.dicts()[0]
  74. except Exception as e:
  75. logging.exception(e)
  76. return False, None
  77. @classmethod
  78. @DB.connection_context()
  79. def get_by_tenant_ids(cls, joined_tenant_ids, user_id,
  80. page_number, items_per_page,
  81. orderby, desc, keywords,
  82. ):
  83. fields = [
  84. cls.model.id,
  85. cls.model.avatar,
  86. cls.model.title,
  87. cls.model.dsl,
  88. cls.model.description,
  89. cls.model.permission,
  90. User.nickname,
  91. User.avatar.alias('tenant_avatar'),
  92. cls.model.update_time
  93. ]
  94. if keywords:
  95. agents = cls.model.select(*fields).join(User, on=(cls.model.user_id == User.id)).where(
  96. ((cls.model.user_id.in_(joined_tenant_ids) & (cls.model.permission ==
  97. TenantPermission.TEAM.value)) | (
  98. cls.model.user_id == user_id)),
  99. (fn.LOWER(cls.model.title).contains(keywords.lower()))
  100. )
  101. else:
  102. agents = cls.model.select(*fields).join(User, on=(cls.model.user_id == User.id)).where(
  103. ((cls.model.user_id.in_(joined_tenant_ids) & (cls.model.permission ==
  104. TenantPermission.TEAM.value)) | (
  105. cls.model.user_id == user_id))
  106. )
  107. if desc:
  108. agents = agents.order_by(cls.model.getter_by(orderby).desc())
  109. else:
  110. agents = agents.order_by(cls.model.getter_by(orderby).asc())
  111. count = agents.count()
  112. agents = agents.paginate(page_number, items_per_page)
  113. return list(agents.dicts()), count
  114. def completion(tenant_id, agent_id, session_id=None, **kwargs):
  115. query = kwargs.get("query", "")
  116. files = kwargs.get("files", [])
  117. inputs = kwargs.get("inputs", {})
  118. user_id = kwargs.get("user_id", "")
  119. if session_id:
  120. e, conv = API4ConversationService.get_by_id(session_id)
  121. assert e, "Session not found!"
  122. if not conv.message:
  123. conv.message = []
  124. if not isinstance(conv.dsl, str):
  125. conv.dsl = json.dumps(conv.dsl, ensure_ascii=False)
  126. canvas = Canvas(conv.dsl, tenant_id, agent_id)
  127. else:
  128. e, cvs = UserCanvasService.get_by_id(agent_id)
  129. assert e, "Agent not found."
  130. assert cvs.user_id == tenant_id, "You do not own the agent."
  131. if not isinstance(cvs.dsl, str):
  132. cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
  133. session_id=get_uuid()
  134. canvas = Canvas(cvs.dsl, tenant_id, agent_id)
  135. canvas.reset()
  136. conv = {
  137. "id": session_id,
  138. "dialog_id": cvs.id,
  139. "user_id": user_id,
  140. "message": [],
  141. "source": "agent",
  142. "dsl": cvs.dsl
  143. }
  144. API4ConversationService.save(**conv)
  145. conv = API4Conversation(**conv)
  146. message_id = str(uuid4())
  147. conv.message.append({
  148. "role": "user",
  149. "content": query,
  150. "id": message_id
  151. })
  152. txt = ""
  153. for ans in canvas.run(query=query, files=files, user_id=user_id, inputs=inputs):
  154. ans["session_id"] = session_id
  155. if ans["event"] == "message":
  156. txt += ans["data"]["content"]
  157. yield "data:" + json.dumps(ans, ensure_ascii=False) + "\n\n"
  158. conv.message.append({"role": "assistant", "content": txt, "created_at": time.time(), "id": message_id})
  159. conv.reference = canvas.get_reference()
  160. conv.errors = canvas.error
  161. conv = conv.to_dict()
  162. API4ConversationService.append_message(conv["id"], conv)
  163. def completionOpenAI(tenant_id, agent_id, question, session_id=None, stream=True, **kwargs):
  164. """Main function for OpenAI-compatible completions, structured similarly to the completion function."""
  165. tiktokenenc = tiktoken.get_encoding("cl100k_base")
  166. e, cvs = UserCanvasService.get_by_id(agent_id)
  167. if not e:
  168. yield get_data_openai(
  169. id=session_id,
  170. model=agent_id,
  171. content="**ERROR**: Agent not found."
  172. )
  173. return
  174. if cvs.user_id != tenant_id:
  175. yield get_data_openai(
  176. id=session_id,
  177. model=agent_id,
  178. content="**ERROR**: You do not own the agent"
  179. )
  180. return
  181. if not isinstance(cvs.dsl, str):
  182. cvs.dsl = json.dumps(cvs.dsl, ensure_ascii=False)
  183. canvas = Canvas(cvs.dsl, tenant_id)
  184. canvas.reset()
  185. message_id = str(uuid4())
  186. # Handle new session creation
  187. if not session_id:
  188. query = canvas.get_preset_param()
  189. if query:
  190. for ele in query:
  191. if not ele["optional"]:
  192. if not kwargs.get(ele["key"]):
  193. yield get_data_openai(
  194. id=None,
  195. model=agent_id,
  196. content=f"`{ele['key']}` is required",
  197. completion_tokens=len(tiktokenenc.encode(f"`{ele['key']}` is required")),
  198. prompt_tokens=len(tiktokenenc.encode(question if question else ""))
  199. )
  200. return
  201. ele["value"] = kwargs[ele["key"]]
  202. if ele["optional"]:
  203. if kwargs.get(ele["key"]):
  204. ele["value"] = kwargs[ele['key']]
  205. else:
  206. if "value" in ele:
  207. ele.pop("value")
  208. cvs.dsl = json.loads(str(canvas))
  209. session_id = get_uuid()
  210. conv = {
  211. "id": session_id,
  212. "dialog_id": cvs.id,
  213. "user_id": kwargs.get("user_id", "") if isinstance(kwargs, dict) else "",
  214. "message": [{"role": "assistant", "content": canvas.get_prologue(), "created_at": time.time()}],
  215. "source": "agent",
  216. "dsl": cvs.dsl
  217. }
  218. canvas.messages.append({"role": "user", "content": question, "id": message_id})
  219. canvas.add_user_input(question)
  220. API4ConversationService.save(**conv)
  221. conv = API4Conversation(**conv)
  222. if not conv.message:
  223. conv.message = []
  224. conv.message.append({
  225. "role": "user",
  226. "content": question,
  227. "id": message_id
  228. })
  229. if not conv.reference:
  230. conv.reference = []
  231. conv.reference.append({"chunks": [], "doc_aggs": []})
  232. # Handle existing session
  233. else:
  234. e, conv = API4ConversationService.get_by_id(session_id)
  235. if not e:
  236. yield get_data_openai(
  237. id=session_id,
  238. model=agent_id,
  239. content="**ERROR**: Session not found!"
  240. )
  241. return
  242. canvas = Canvas(json.dumps(conv.dsl), tenant_id)
  243. canvas.messages.append({"role": "user", "content": question, "id": message_id})
  244. canvas.add_user_input(question)
  245. if not conv.message:
  246. conv.message = []
  247. conv.message.append({
  248. "role": "user",
  249. "content": question,
  250. "id": message_id
  251. })
  252. if not conv.reference:
  253. conv.reference = []
  254. conv.reference.append({"chunks": [], "doc_aggs": []})
  255. # Process request based on stream mode
  256. final_ans = {"reference": [], "content": ""}
  257. prompt_tokens = len(tiktokenenc.encode(str(question)))
  258. if stream:
  259. try:
  260. completion_tokens = 0
  261. for ans in canvas.run(stream=True, bypass_begin=True):
  262. if ans.get("running_status"):
  263. completion_tokens += len(tiktokenenc.encode(ans.get("content", "")))
  264. yield "data: " + json.dumps(
  265. get_data_openai(
  266. id=session_id,
  267. model=agent_id,
  268. content=ans["content"],
  269. object="chat.completion.chunk",
  270. completion_tokens=completion_tokens,
  271. prompt_tokens=prompt_tokens
  272. ),
  273. ensure_ascii=False
  274. ) + "\n\n"
  275. continue
  276. for k in ans.keys():
  277. final_ans[k] = ans[k]
  278. completion_tokens += len(tiktokenenc.encode(final_ans.get("content", "")))
  279. yield "data: " + json.dumps(
  280. get_data_openai(
  281. id=session_id,
  282. model=agent_id,
  283. content=final_ans["content"],
  284. object="chat.completion.chunk",
  285. finish_reason="stop",
  286. completion_tokens=completion_tokens,
  287. prompt_tokens=prompt_tokens
  288. ),
  289. ensure_ascii=False
  290. ) + "\n\n"
  291. # Update conversation
  292. canvas.messages.append({"role": "assistant", "content": final_ans["content"], "created_at": time.time(), "id": message_id})
  293. canvas.history.append(("assistant", final_ans["content"]))
  294. if final_ans.get("reference"):
  295. canvas.reference.append(final_ans["reference"])
  296. conv.dsl = json.loads(str(canvas))
  297. API4ConversationService.append_message(conv.id, conv.to_dict())
  298. yield "data: [DONE]\n\n"
  299. except Exception as e:
  300. traceback.print_exc()
  301. conv.dsl = json.loads(str(canvas))
  302. API4ConversationService.append_message(conv.id, conv.to_dict())
  303. yield "data: " + json.dumps(
  304. get_data_openai(
  305. id=session_id,
  306. model=agent_id,
  307. content="**ERROR**: " + str(e),
  308. finish_reason="stop",
  309. completion_tokens=len(tiktokenenc.encode("**ERROR**: " + str(e))),
  310. prompt_tokens=prompt_tokens
  311. ),
  312. ensure_ascii=False
  313. ) + "\n\n"
  314. yield "data: [DONE]\n\n"
  315. else: # Non-streaming mode
  316. try:
  317. all_answer_content = ""
  318. for answer in canvas.run(stream=False, bypass_begin=True):
  319. if answer.get("running_status"):
  320. continue
  321. final_ans["content"] = "\n".join(answer["content"]) if "content" in answer else ""
  322. final_ans["reference"] = answer.get("reference", [])
  323. all_answer_content += final_ans["content"]
  324. final_ans["content"] = all_answer_content
  325. # Update conversation
  326. canvas.messages.append({"role": "assistant", "content": final_ans["content"], "created_at": time.time(), "id": message_id})
  327. canvas.history.append(("assistant", final_ans["content"]))
  328. if final_ans.get("reference"):
  329. canvas.reference.append(final_ans["reference"])
  330. conv.dsl = json.loads(str(canvas))
  331. API4ConversationService.append_message(conv.id, conv.to_dict())
  332. # Return the response in OpenAI format
  333. yield get_data_openai(
  334. id=session_id,
  335. model=agent_id,
  336. content=final_ans["content"],
  337. finish_reason="stop",
  338. completion_tokens=len(tiktokenenc.encode(final_ans["content"])),
  339. prompt_tokens=prompt_tokens,
  340. param=canvas.get_preset_param() # Added param info like in completion
  341. )
  342. except Exception as e:
  343. traceback.print_exc()
  344. conv.dsl = json.loads(str(canvas))
  345. API4ConversationService.append_message(conv.id, conv.to_dict())
  346. yield get_data_openai(
  347. id=session_id,
  348. model=agent_id,
  349. content="**ERROR**: " + str(e),
  350. finish_reason="stop",
  351. completion_tokens=len(tiktokenenc.encode("**ERROR**: " + str(e))),
  352. prompt_tokens=prompt_tokens
  353. )