| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import os
- import random
- import xxhash
- from datetime import datetime
-
- from api.db.db_utils import bulk_insert_into_db
- from deepdoc.parser import PdfParser
- from peewee import JOIN
- from api.db.db_models import DB, File2Document, File
- from api.db import StatusEnum, FileType, TaskStatus
- from api.db.db_models import Task, Document, Knowledgebase, Tenant
- from api.db.services.common_service import CommonService
- from api.db.services.document_service import DocumentService
- from api.utils import current_timestamp, get_uuid
- from deepdoc.parser.excel_parser import RAGFlowExcelParser
- from rag.settings import get_svr_queue_name
- from rag.utils.storage_factory import STORAGE_IMPL
- from rag.utils.redis_conn import REDIS_CONN
- from api import settings
- from rag.nlp import search
-
-
- def trim_header_by_lines(text: str, max_length) -> str:
- # Trim header text to maximum length while preserving line breaks
- # Args:
- # text: Input text to trim
- # max_length: Maximum allowed length
- # Returns:
- # Trimmed text
- len_text = len(text)
- if len_text <= max_length:
- return text
- for i in range(len_text):
- if text[i] == '\n' and len_text - i <= max_length:
- return text[i + 1:]
- return text
-
-
- class TaskService(CommonService):
- """Service class for managing document processing tasks.
-
- This class extends CommonService to provide specialized functionality for document
- processing task management, including task creation, progress tracking, and chunk
- management. It handles various document types (PDF, Excel, etc.) and manages their
- processing lifecycle.
-
- The class implements a robust task queue system with retry mechanisms and progress
- tracking, supporting both synchronous and asynchronous task execution.
-
- Attributes:
- model: The Task model class for database operations.
- """
- model = Task
-
- @classmethod
- @DB.connection_context()
- def get_task(cls, task_id):
- """Retrieve detailed task information by task ID.
-
- This method fetches comprehensive task details including associated document,
- knowledge base, and tenant information. It also handles task retry logic and
- progress updates.
-
- Args:
- task_id (str): The unique identifier of the task to retrieve.
-
- Returns:
- dict: Task details dictionary containing all task information and related metadata.
- Returns None if task is not found or has exceeded retry limit.
- """
- fields = [
- cls.model.id,
- cls.model.doc_id,
- cls.model.from_page,
- cls.model.to_page,
- cls.model.retry_count,
- Document.kb_id,
- Document.parser_id,
- Document.parser_config,
- Document.name,
- Document.type,
- Document.location,
- Document.size,
- Knowledgebase.tenant_id,
- Knowledgebase.language,
- Knowledgebase.embd_id,
- Knowledgebase.pagerank,
- Knowledgebase.parser_config.alias("kb_parser_config"),
- Tenant.img2txt_id,
- Tenant.asr_id,
- Tenant.llm_id,
- cls.model.update_time,
- ]
- docs = (
- cls.model.select(*fields)
- .join(Document, on=(cls.model.doc_id == Document.id))
- .join(Knowledgebase, on=(Document.kb_id == Knowledgebase.id))
- .join(Tenant, on=(Knowledgebase.tenant_id == Tenant.id))
- .where(cls.model.id == task_id)
- )
- docs = list(docs.dicts())
- if not docs:
- return None
-
- msg = f"\n{datetime.now().strftime('%H:%M:%S')} Task has been received."
- prog = random.random() / 10.0
- if docs[0]["retry_count"] >= 3:
- msg = "\nERROR: Task is abandoned after 3 times attempts."
- prog = -1
-
- cls.model.update(
- progress_msg=cls.model.progress_msg + msg,
- progress=prog,
- retry_count=docs[0]["retry_count"] + 1,
- ).where(cls.model.id == docs[0]["id"]).execute()
-
- if docs[0]["retry_count"] >= 3:
- return None
-
- return docs[0]
-
- @classmethod
- @DB.connection_context()
- def get_tasks(cls, doc_id: str):
- """Retrieve all tasks associated with a document.
-
- This method fetches all processing tasks for a given document, ordered by page
- number and creation time. It includes task progress and chunk information.
-
- Args:
- doc_id (str): The unique identifier of the document.
-
- Returns:
- list[dict]: List of task dictionaries containing task details.
- Returns None if no tasks are found.
- """
- fields = [
- cls.model.id,
- cls.model.from_page,
- cls.model.progress,
- cls.model.digest,
- cls.model.chunk_ids,
- ]
- tasks = (
- cls.model.select(*fields).order_by(cls.model.from_page.asc(), cls.model.create_time.desc())
- .where(cls.model.doc_id == doc_id)
- )
- tasks = list(tasks.dicts())
- if not tasks:
- return None
- return tasks
-
- @classmethod
- @DB.connection_context()
- def update_chunk_ids(cls, id: str, chunk_ids: str):
- """Update the chunk IDs associated with a task.
-
- This method updates the chunk_ids field of a task, which stores the IDs of
- processed document chunks in a space-separated string format.
-
- Args:
- id (str): The unique identifier of the task.
- chunk_ids (str): Space-separated string of chunk identifiers.
- """
- cls.model.update(chunk_ids=chunk_ids).where(cls.model.id == id).execute()
-
- @classmethod
- @DB.connection_context()
- def get_ongoing_doc_name(cls):
- """Get names of documents that are currently being processed.
-
- This method retrieves information about documents that are in the processing state,
- including their locations and associated IDs. It uses database locking to ensure
- thread safety when accessing the task information.
-
- Returns:
- list[tuple]: A list of tuples, each containing (parent_id/kb_id, location)
- for documents currently being processed. Returns empty list if
- no documents are being processed.
- """
- with DB.lock("get_task", -1):
- docs = (
- cls.model.select(
- *[Document.id, Document.kb_id, Document.location, File.parent_id]
- )
- .join(Document, on=(cls.model.doc_id == Document.id))
- .join(
- File2Document,
- on=(File2Document.document_id == Document.id),
- join_type=JOIN.LEFT_OUTER,
- )
- .join(
- File,
- on=(File2Document.file_id == File.id),
- join_type=JOIN.LEFT_OUTER,
- )
- .where(
- Document.status == StatusEnum.VALID.value,
- Document.run == TaskStatus.RUNNING.value,
- ~(Document.type == FileType.VIRTUAL.value),
- cls.model.progress < 1,
- cls.model.create_time >= current_timestamp() - 1000 * 600,
- )
- )
- docs = list(docs.dicts())
- if not docs:
- return []
-
- return list(
- set(
- [
- (
- d["parent_id"] if d["parent_id"] else d["kb_id"],
- d["location"],
- )
- for d in docs
- ]
- )
- )
-
- @classmethod
- @DB.connection_context()
- def do_cancel(cls, id):
- """Check if a task should be cancelled based on its document status.
-
- This method determines whether a task should be cancelled by checking the
- associated document's run status and progress. A task should be cancelled
- if its document is marked for cancellation or has negative progress.
-
- Args:
- id (str): The unique identifier of the task to check.
-
- Returns:
- bool: True if the task should be cancelled, False otherwise.
- """
- task = cls.model.get_by_id(id)
- _, doc = DocumentService.get_by_id(task.doc_id)
- return doc.run == TaskStatus.CANCEL.value or doc.progress < 0
-
- @classmethod
- @DB.connection_context()
- def update_progress(cls, id, info):
- """Update the progress information for a task.
-
- This method updates both the progress message and completion percentage of a task.
- It handles platform-specific behavior (macOS vs others) and uses database locking
- when necessary to ensure thread safety.
-
- Args:
- id (str): The unique identifier of the task to update.
- info (dict): Dictionary containing progress information with keys:
- - progress_msg (str, optional): Progress message to append
- - progress (float, optional): Progress percentage (0.0 to 1.0)
- """
- if os.environ.get("MACOS"):
- if info["progress_msg"]:
- task = cls.model.get_by_id(id)
- progress_msg = trim_header_by_lines(task.progress_msg + "\n" + info["progress_msg"], 3000)
- cls.model.update(progress_msg=progress_msg).where(cls.model.id == id).execute()
- if "progress" in info:
- cls.model.update(progress=info["progress"]).where(
- cls.model.id == id
- ).execute()
- return
-
- with DB.lock("update_progress", -1):
- if info["progress_msg"]:
- task = cls.model.get_by_id(id)
- progress_msg = trim_header_by_lines(task.progress_msg + "\n" + info["progress_msg"], 3000)
- cls.model.update(progress_msg=progress_msg).where(cls.model.id == id).execute()
- if "progress" in info:
- cls.model.update(progress=info["progress"]).where(
- cls.model.id == id
- ).execute()
-
-
- def queue_tasks(doc: dict, bucket: str, name: str, priority: int):
- """Create and queue document processing tasks.
-
- This function creates processing tasks for a document based on its type and configuration.
- It handles different document types (PDF, Excel, etc.) differently and manages task
- chunking and configuration. It also implements task reuse optimization by checking
- for previously completed tasks.
-
- Args:
- doc (dict): Document dictionary containing metadata and configuration.
- bucket (str): Storage bucket name where the document is stored.
- name (str): File name of the document.
- priority (int, optional): Priority level for task queueing (default is 0).
-
- Note:
- - For PDF documents, tasks are created per page range based on configuration
- - For Excel documents, tasks are created per row range
- - Task digests are calculated for optimization and reuse
- - Previous task chunks may be reused if available
- """
- def new_task():
- return {"id": get_uuid(), "doc_id": doc["id"], "progress": 0.0, "from_page": 0, "to_page": 100000000}
-
- parse_task_array = []
-
- if doc["type"] == FileType.PDF.value:
- file_bin = STORAGE_IMPL.get(bucket, name)
- do_layout = doc["parser_config"].get("layout_recognize", "DeepDOC")
- pages = PdfParser.total_page_number(doc["name"], file_bin)
- page_size = doc["parser_config"].get("task_page_size", 12)
- if doc["parser_id"] == "paper":
- page_size = doc["parser_config"].get("task_page_size", 22)
- if doc["parser_id"] in ["one", "knowledge_graph"] or do_layout != "DeepDOC":
- page_size = 10 ** 9
- page_ranges = doc["parser_config"].get("pages") or [(1, 10 ** 5)]
- for s, e in page_ranges:
- s -= 1
- s = max(0, s)
- e = min(e - 1, pages)
- for p in range(s, e, page_size):
- task = new_task()
- task["from_page"] = p
- task["to_page"] = min(p + page_size, e)
- parse_task_array.append(task)
-
- elif doc["parser_id"] == "table":
- file_bin = STORAGE_IMPL.get(bucket, name)
- rn = RAGFlowExcelParser.row_number(doc["name"], file_bin)
- for i in range(0, rn, 3000):
- task = new_task()
- task["from_page"] = i
- task["to_page"] = min(i + 3000, rn)
- parse_task_array.append(task)
- else:
- parse_task_array.append(new_task())
-
- chunking_config = DocumentService.get_chunking_config(doc["id"])
- for task in parse_task_array:
- hasher = xxhash.xxh64()
- for field in sorted(chunking_config.keys()):
- if field == "parser_config":
- for k in ["raptor", "graphrag"]:
- if k in chunking_config[field]:
- del chunking_config[field][k]
- hasher.update(str(chunking_config[field]).encode("utf-8"))
- for field in ["doc_id", "from_page", "to_page"]:
- hasher.update(str(task.get(field, "")).encode("utf-8"))
- task_digest = hasher.hexdigest()
- task["digest"] = task_digest
- task["progress"] = 0.0
- task["priority"] = priority
-
- prev_tasks = TaskService.get_tasks(doc["id"])
- ck_num = 0
- if prev_tasks:
- for task in parse_task_array:
- ck_num += reuse_prev_task_chunks(task, prev_tasks, chunking_config)
- TaskService.filter_delete([Task.doc_id == doc["id"]])
- chunk_ids = []
- for task in prev_tasks:
- if task["chunk_ids"]:
- chunk_ids.extend(task["chunk_ids"].split())
- if chunk_ids:
- settings.docStoreConn.delete({"id": chunk_ids}, search.index_name(chunking_config["tenant_id"]),
- chunking_config["kb_id"])
- DocumentService.update_by_id(doc["id"], {"chunk_num": ck_num})
-
- bulk_insert_into_db(Task, parse_task_array, True)
- DocumentService.begin2parse(doc["id"])
-
- unfinished_task_array = [task for task in parse_task_array if task["progress"] < 1.0]
- for unfinished_task in unfinished_task_array:
- assert REDIS_CONN.queue_product(
- get_svr_queue_name(priority), message=unfinished_task
- ), "Can't access Redis. Please check the Redis' status."
-
-
- def reuse_prev_task_chunks(task: dict, prev_tasks: list[dict], chunking_config: dict):
- """Attempt to reuse chunks from previous tasks for optimization.
-
- This function checks if chunks from previously completed tasks can be reused for
- the current task, which can significantly improve processing efficiency. It matches
- tasks based on page ranges and configuration digests.
-
- Args:
- task (dict): Current task dictionary to potentially reuse chunks for.
- prev_tasks (list[dict]): List of previous task dictionaries to check for reuse.
- chunking_config (dict): Configuration dictionary for chunk processing.
-
- Returns:
- int: Number of chunks successfully reused. Returns 0 if no chunks could be reused.
-
- Note:
- Chunks can only be reused if:
- - A previous task exists with matching page range and configuration digest
- - The previous task was completed successfully (progress = 1.0)
- - The previous task has valid chunk IDs
- """
- idx = 0
- while idx < len(prev_tasks):
- prev_task = prev_tasks[idx]
- if prev_task.get("from_page", 0) == task.get("from_page", 0) \
- and prev_task.get("digest", 0) == task.get("digest", ""):
- break
- idx += 1
-
- if idx >= len(prev_tasks):
- return 0
- prev_task = prev_tasks[idx]
- if prev_task["progress"] < 1.0 or not prev_task["chunk_ids"]:
- return 0
- task["chunk_ids"] = prev_task["chunk_ids"]
- task["progress"] = 1.0
- if "from_page" in task and "to_page" in task and int(task['to_page']) - int(task['from_page']) >= 10 ** 6:
- task["progress_msg"] = f"Page({task['from_page']}~{task['to_page']}): "
- else:
- task["progress_msg"] = ""
- task["progress_msg"] = " ".join(
- [datetime.now().strftime("%H:%M:%S"), task["progress_msg"], "Reused previous task's chunks."])
- prev_task["chunk_ids"] = ""
-
- return len(task["chunk_ids"].split())
|