You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

research_report.json 54KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107
  1. {
  2. "id": 10,
  3. "title": "Research report generator",
  4. "description": "A report generator that creates a research report from a given title, in the specified target language. It generates queries from the input title, then uses these to create subtitles and sections, compiling everything into a comprehensive report.",
  5. "canvas_type": "chatbot",
  6. "dsl": {
  7. "answer": [],
  8. "components": {
  9. "Answer:WittyBottlesJog": {
  10. "downstream": [],
  11. "obj": {
  12. "component_name": "Answer",
  13. "inputs": [],
  14. "output": null,
  15. "params": {
  16. "debug_inputs": [],
  17. "inputs": [],
  18. "message_history_window_size": 22,
  19. "output": null,
  20. "output_var_name": "output",
  21. "post_answers": [],
  22. "query": []
  23. }
  24. },
  25. "upstream": [
  26. "Template:LegalDoorsAct"
  27. ]
  28. },
  29. "Baidu:MeanBroomsMatter": {
  30. "downstream": [
  31. "Generate:YoungClownsKnock"
  32. ],
  33. "obj": {
  34. "component_name": "Baidu",
  35. "inputs": [],
  36. "output": null,
  37. "params": {
  38. "debug_inputs": [],
  39. "inputs": [],
  40. "message_history_window_size": 22,
  41. "output": null,
  42. "output_var_name": "output",
  43. "query": [
  44. {
  45. "component_id": "IterationItem:RudeTablesSmile",
  46. "type": "reference"
  47. }
  48. ],
  49. "top_n": 10
  50. }
  51. },
  52. "parent_id": "Iteration:BlueClothsGrab",
  53. "upstream": [
  54. "IterationItem:RudeTablesSmile"
  55. ]
  56. },
  57. "Generate:EveryCoinsStare": {
  58. "downstream": [
  59. "Generate:RedWormsDouble",
  60. "Iteration:BlueClothsGrab"
  61. ],
  62. "obj": {
  63. "component_name": "Generate",
  64. "inputs": [],
  65. "output": null,
  66. "params": {
  67. "cite": false,
  68. "debug_inputs": [],
  69. "frequency_penalty": 0.7,
  70. "inputs": [],
  71. "llm_id": "deepseek-chat@DeepSeek",
  72. "max_tokens": 256,
  73. "message_history_window_size": 1,
  74. "output": null,
  75. "output_var_name": "output",
  76. "parameters": [],
  77. "presence_penalty": 0.4,
  78. "prompt": "<instruction>\n<task_description>\nGenerate a series of appropriate search engine queries to break down questions based on user inquiries\n</task_description>\n\n<examples>\n<example>\nInput: User asks how to learn programming\nOutput: programming learning methods, programming tutorials for beginners\n</example>\n\n<example>\nInput: User wants to understand latest technology trends \nOutput: tech trends 2024, latest technology news\n</example>\n\n<example>\nInput: User seeks healthy eating advice\nOutput: healthy eating guide, balanced nutrition diet\n</example>\n</examples>\n\n<instructions>\n1. Take user's question as input.\n2. Identify relevant keywords or phrases based on the topic of user's question.\n3. Use these keywords or phrases to make search engine queries.\n4. Generate a series of appropriate search engine queries to help break down user's question.\n5. Ensure output content does not contain any xml tags.\n6. The output must be pure and conform to the <example> style without other explanations.\n7. Break down into at least 4-6 subproblems.\n8. Output is separated only by commas.\n</instructions>\n\n\ntitle: {begin@title}\nlanguage: {begin@language}\nThe output must be pure and conform to the <example> style without other explanations.\nOutput is separated only by commas.\nBreak down into at least 4-6 subproblems.\n\nOutput:",
  79. "query": [],
  80. "temperature": 0.1,
  81. "top_p": 0.3
  82. }
  83. },
  84. "upstream": [
  85. "begin"
  86. ]
  87. },
  88. "Generate:RealLoopsVanish": {
  89. "downstream": [
  90. "Template:SpottyWaspsLose"
  91. ],
  92. "obj": {
  93. "component_name": "Generate",
  94. "inputs": [],
  95. "output": null,
  96. "params": {
  97. "cite": false,
  98. "debug_inputs": [],
  99. "frequency_penalty": 0.7,
  100. "inputs": [],
  101. "llm_id": "deepseek-chat@DeepSeek",
  102. "max_tokens": 0,
  103. "message_history_window_size": 1,
  104. "output": null,
  105. "output_var_name": "output",
  106. "parameters": [],
  107. "presence_penalty": 0.4,
  108. "prompt": "In a detailed report — The report should focus on the answer to {IterationItem:OliveStatesSmoke}and nothing else.\n\n\nLanguage: {begin@language}\nContext as bellow: \n\n\"{Iteration:BlueClothsGrab}\"\n\nProvide the research report in the specified language, avoiding small talk.\nThe main content is provided in markdown format\nWrite all source urls at the end of the report in apa format. ",
  109. "query": [],
  110. "temperature": 0.1,
  111. "top_p": 0.3
  112. }
  113. },
  114. "parent_id": "Iteration:ThreeParksChew",
  115. "upstream": [
  116. "IterationItem:OliveStatesSmoke"
  117. ]
  118. },
  119. "Generate:RedWormsDouble": {
  120. "downstream": [
  121. "Iteration:ThreeParksChew"
  122. ],
  123. "obj": {
  124. "component_name": "Generate",
  125. "inputs": [],
  126. "output": null,
  127. "params": {
  128. "cite": false,
  129. "debug_inputs": [],
  130. "frequency_penalty": 0.7,
  131. "inputs": [],
  132. "llm_id": "deepseek-chat@DeepSeek",
  133. "max_tokens": 0,
  134. "message_history_window_size": 1,
  135. "output": null,
  136. "output_var_name": "output",
  137. "parameters": [],
  138. "presence_penalty": 0.4,
  139. "prompt": "According to query: ' {Generate:EveryCoinsStare}',for ' {begin@title}', generate 3 to 5 sub-titles.\n\n<instructions>\nPlease generate 4 subheadings for the main title following these steps:\n - 1. Carefully read the provided main title and related content\n - 2. Analyze the core theme and key information points of the main title\n - 3. Ensure the generated subheadings maintain consistency and relevance with the main title\n - 4. Each subheading should:\n - Be concise and appropriate in length\n - Highlight a unique angle or key point\n - Capture readers' interest\n - Match the overall style and tone of the article\n - 5. Between subheadings:\n - Content should not overlap\n - Logical order should be maintained\n - Should collectively support the main title\n - Use numerical sequence (1, 2, 3...) to mark each subheading\n - 6. Output format requirements:\n - Each subheading on a separate line\n - No XML tags included\n - Output subheadings content only\n</instructions>\n\nlanguage: {begin@language}\nGenerate a series of appropriate sub-title to help break down ' {begin@title}'.\nBreaks down complex topics into manageable subtopics.\n\nOutput:",
  140. "query": [],
  141. "temperature": 0.1,
  142. "top_p": 0.3
  143. }
  144. },
  145. "upstream": [
  146. "Generate:EveryCoinsStare"
  147. ]
  148. },
  149. "Generate:YoungClownsKnock": {
  150. "downstream": [],
  151. "obj": {
  152. "component_name": "Generate",
  153. "inputs": [],
  154. "output": null,
  155. "params": {
  156. "cite": false,
  157. "debug_inputs": [],
  158. "frequency_penalty": 0.7,
  159. "inputs": [],
  160. "llm_id": "deepseek-chat@DeepSeek",
  161. "max_tokens": 0,
  162. "message_history_window_size": 1,
  163. "output": null,
  164. "output_var_name": "output",
  165. "parameters": [],
  166. "presence_penalty": 0.4,
  167. "prompt": "Your goal is to provide answers based on information from the internet. \nYou must use the provided search results to find relevant online information. \nYou should never use your own knowledge to answer questions.\nPlease include relevant url sources in the end of your answers.\n{Baidu:MeanBroomsMatter}\n\n\n\n\n\nlanguage: {begin@language}\n\n\n \" {Baidu:MeanBroomsMatter}\" \n\n\n\n\nUsing the above information, answer the following question or topic: \" {IterationItem:RudeTablesSmile} \"\nin a detailed report — The report should focus on the answer to the question, should be well structured, informative, in depth, with facts and numbers if available, a minimum of 1,200 words and with markdown syntax and apa format. Write all source urls at the end of the report in apa format. You should write your report only based on the given information and nothing else.",
  168. "query": [],
  169. "temperature": 0.1,
  170. "top_p": 0.3
  171. }
  172. },
  173. "parent_id": "Iteration:BlueClothsGrab",
  174. "upstream": [
  175. "Baidu:MeanBroomsMatter"
  176. ]
  177. },
  178. "Iteration:BlueClothsGrab": {
  179. "downstream": [],
  180. "obj": {
  181. "component_name": "Iteration",
  182. "inputs": [],
  183. "output": null,
  184. "params": {
  185. "debug_inputs": [],
  186. "delimiter": ",",
  187. "inputs": [],
  188. "message_history_window_size": 22,
  189. "output": null,
  190. "output_var_name": "output",
  191. "query": [
  192. {
  193. "component_id": "Generate:EveryCoinsStare",
  194. "type": "reference"
  195. }
  196. ]
  197. }
  198. },
  199. "upstream": [
  200. "Generate:EveryCoinsStare"
  201. ]
  202. },
  203. "Iteration:ThreeParksChew": {
  204. "downstream": [
  205. "Template:LegalDoorsAct"
  206. ],
  207. "obj": {
  208. "component_name": "Iteration",
  209. "inputs": [],
  210. "output": null,
  211. "params": {
  212. "debug_inputs": [],
  213. "delimiter": "\n",
  214. "inputs": [],
  215. "message_history_window_size": 22,
  216. "output": null,
  217. "output_var_name": "output",
  218. "query": [
  219. {
  220. "component_id": "Generate:RedWormsDouble",
  221. "type": "reference"
  222. }
  223. ]
  224. }
  225. },
  226. "upstream": [
  227. "Generate:RedWormsDouble"
  228. ]
  229. },
  230. "IterationItem:OliveStatesSmoke": {
  231. "downstream": [
  232. "Generate:RealLoopsVanish"
  233. ],
  234. "obj": {
  235. "component_name": "IterationItem",
  236. "inputs": [],
  237. "output": null,
  238. "params": {
  239. "debug_inputs": [],
  240. "inputs": [],
  241. "message_history_window_size": 22,
  242. "output": null,
  243. "output_var_name": "output",
  244. "query": []
  245. }
  246. },
  247. "parent_id": "Iteration:ThreeParksChew",
  248. "upstream": []
  249. },
  250. "IterationItem:RudeTablesSmile": {
  251. "downstream": [
  252. "Baidu:MeanBroomsMatter"
  253. ],
  254. "obj": {
  255. "component_name": "IterationItem",
  256. "inputs": [],
  257. "output": null,
  258. "params": {
  259. "debug_inputs": [],
  260. "inputs": [],
  261. "message_history_window_size": 22,
  262. "output": null,
  263. "output_var_name": "output",
  264. "query": []
  265. }
  266. },
  267. "parent_id": "Iteration:BlueClothsGrab",
  268. "upstream": []
  269. },
  270. "Template:LegalDoorsAct": {
  271. "downstream": [
  272. "Answer:WittyBottlesJog"
  273. ],
  274. "obj": {
  275. "component_name": "Template",
  276. "inputs": [],
  277. "output": null,
  278. "params": {
  279. "content": "<h1> {begin@title}</h1>\n\n\n\n{Iteration:ThreeParksChew}",
  280. "debug_inputs": [],
  281. "inputs": [],
  282. "message_history_window_size": 22,
  283. "output": null,
  284. "output_var_name": "output",
  285. "parameters": [],
  286. "query": []
  287. }
  288. },
  289. "upstream": [
  290. "Iteration:ThreeParksChew"
  291. ]
  292. },
  293. "Template:SpottyWaspsLose": {
  294. "downstream": [],
  295. "obj": {
  296. "component_name": "Template",
  297. "inputs": [],
  298. "output": null,
  299. "params": {
  300. "content": "<h2> {IterationItem:OliveStatesSmoke}</h2>\n<div> {Generate:RealLoopsVanish}</div>",
  301. "debug_inputs": [],
  302. "inputs": [],
  303. "message_history_window_size": 22,
  304. "output": null,
  305. "output_var_name": "output",
  306. "parameters": [],
  307. "query": []
  308. }
  309. },
  310. "parent_id": "Iteration:ThreeParksChew",
  311. "upstream": [
  312. "Generate:RealLoopsVanish"
  313. ]
  314. },
  315. "begin": {
  316. "downstream": [
  317. "Generate:EveryCoinsStare"
  318. ],
  319. "obj": {
  320. "component_name": "Begin",
  321. "inputs": [],
  322. "output": null,
  323. "params": {
  324. "debug_inputs": [],
  325. "inputs": [],
  326. "message_history_window_size": 22,
  327. "output": null,
  328. "output_var_name": "output",
  329. "prologue": "",
  330. "query": [
  331. {
  332. "key": "title",
  333. "name": "Title",
  334. "optional": false,
  335. "type": "line"
  336. },
  337. {
  338. "key": "language",
  339. "name": "Language",
  340. "optional": false,
  341. "type": "line"
  342. }
  343. ]
  344. }
  345. },
  346. "upstream": []
  347. }
  348. },
  349. "embed_id": "",
  350. "graph": {
  351. "edges": [
  352. {
  353. "id": "reactflow__edge-Baidu:SharpHotelsNailb-Generate:RealCamerasSendb",
  354. "markerEnd": "logo",
  355. "source": "Baidu:SharpHotelsNail",
  356. "sourceHandle": "b",
  357. "style": {
  358. "stroke": "rgb(202 197 245)",
  359. "strokeWidth": 2
  360. },
  361. "target": "Generate:RealCamerasSend",
  362. "targetHandle": "b",
  363. "type": "buttonEdge",
  364. "zIndex": 1001
  365. },
  366. {
  367. "id": "reactflow__edge-Generate:BeigeEyesFlyb-Template:ThinSnailsDreamc",
  368. "markerEnd": "logo",
  369. "source": "Generate:BeigeEyesFly",
  370. "sourceHandle": "b",
  371. "style": {
  372. "stroke": "rgb(202 197 245)",
  373. "strokeWidth": 2
  374. },
  375. "target": "Template:ThinSnailsDream",
  376. "targetHandle": "c",
  377. "type": "buttonEdge",
  378. "zIndex": 1001
  379. },
  380. {
  381. "id": "reactflow__edge-IterationItem:RudeTablesSmile-Baidu:MeanBroomsMatterc",
  382. "markerEnd": "logo",
  383. "source": "IterationItem:RudeTablesSmile",
  384. "sourceHandle": null,
  385. "style": {
  386. "stroke": "rgb(202 197 245)",
  387. "strokeWidth": 2
  388. },
  389. "target": "Baidu:MeanBroomsMatter",
  390. "targetHandle": "c",
  391. "type": "buttonEdge",
  392. "zIndex": 1001
  393. },
  394. {
  395. "id": "xy-edge__Generate:EveryCoinsStareb-Generate:RedWormsDoublec",
  396. "markerEnd": "logo",
  397. "source": "Generate:EveryCoinsStare",
  398. "sourceHandle": "b",
  399. "style": {
  400. "stroke": "rgb(202 197 245)",
  401. "strokeWidth": 2
  402. },
  403. "target": "Generate:RedWormsDouble",
  404. "targetHandle": "c",
  405. "type": "buttonEdge",
  406. "zIndex": 1001
  407. },
  408. {
  409. "id": "xy-edge__begin-Generate:EveryCoinsStarec",
  410. "markerEnd": "logo",
  411. "source": "begin",
  412. "style": {
  413. "stroke": "rgb(202 197 245)",
  414. "strokeWidth": 2
  415. },
  416. "target": "Generate:EveryCoinsStare",
  417. "targetHandle": "c",
  418. "type": "buttonEdge",
  419. "zIndex": 1001
  420. },
  421. {
  422. "id": "xy-edge__Generate:RedWormsDoubleb-Iteration:ThreeParksChewc",
  423. "markerEnd": "logo",
  424. "source": "Generate:RedWormsDouble",
  425. "sourceHandle": "b",
  426. "style": {
  427. "stroke": "rgb(202 197 245)",
  428. "strokeWidth": 2
  429. },
  430. "target": "Iteration:ThreeParksChew",
  431. "targetHandle": "c",
  432. "type": "buttonEdge",
  433. "zIndex": 1001
  434. },
  435. {
  436. "id": "xy-edge__Generate:EveryCoinsStareb-Iteration:BlueClothsGrabc",
  437. "markerEnd": "logo",
  438. "source": "Generate:EveryCoinsStare",
  439. "sourceHandle": "b",
  440. "style": {
  441. "stroke": "rgb(202 197 245)",
  442. "strokeWidth": 2
  443. },
  444. "target": "Iteration:BlueClothsGrab",
  445. "targetHandle": "c",
  446. "type": "buttonEdge",
  447. "zIndex": 1001
  448. },
  449. {
  450. "id": "xy-edge__Baidu:MeanBroomsMatterb-Generate:YoungClownsKnockb",
  451. "markerEnd": "logo",
  452. "source": "Baidu:MeanBroomsMatter",
  453. "sourceHandle": "b",
  454. "style": {
  455. "stroke": "rgb(202 197 245)",
  456. "strokeWidth": 2
  457. },
  458. "target": "Generate:YoungClownsKnock",
  459. "targetHandle": "b",
  460. "type": "buttonEdge",
  461. "zIndex": 1001
  462. },
  463. {
  464. "id": "xy-edge__IterationItem:OliveStatesSmoke-Generate:RealLoopsVanishc",
  465. "markerEnd": "logo",
  466. "source": "IterationItem:OliveStatesSmoke",
  467. "style": {
  468. "stroke": "rgb(202 197 245)",
  469. "strokeWidth": 2
  470. },
  471. "target": "Generate:RealLoopsVanish",
  472. "targetHandle": "c",
  473. "type": "buttonEdge",
  474. "zIndex": 1001
  475. },
  476. {
  477. "id": "xy-edge__Generate:RealLoopsVanishb-Template:SpottyWaspsLoseb",
  478. "markerEnd": "logo",
  479. "source": "Generate:RealLoopsVanish",
  480. "sourceHandle": "b",
  481. "style": {
  482. "stroke": "rgb(202 197 245)",
  483. "strokeWidth": 2
  484. },
  485. "target": "Template:SpottyWaspsLose",
  486. "targetHandle": "b",
  487. "type": "buttonEdge",
  488. "zIndex": 1001
  489. },
  490. {
  491. "id": "xy-edge__Iteration:ThreeParksChewb-Template:LegalDoorsActc",
  492. "markerEnd": "logo",
  493. "source": "Iteration:ThreeParksChew",
  494. "sourceHandle": "b",
  495. "style": {
  496. "stroke": "rgb(202 197 245)",
  497. "strokeWidth": 2
  498. },
  499. "target": "Template:LegalDoorsAct",
  500. "targetHandle": "c",
  501. "type": "buttonEdge",
  502. "zIndex": 1001
  503. },
  504. {
  505. "id": "xy-edge__Template:LegalDoorsActb-Answer:WittyBottlesJogc",
  506. "markerEnd": "logo",
  507. "source": "Template:LegalDoorsAct",
  508. "sourceHandle": "b",
  509. "style": {
  510. "stroke": "rgb(202 197 245)",
  511. "strokeWidth": 2
  512. },
  513. "target": "Answer:WittyBottlesJog",
  514. "targetHandle": "c",
  515. "type": "buttonEdge",
  516. "zIndex": 1001
  517. }
  518. ],
  519. "nodes": [
  520. {
  521. "data": {
  522. "form": {
  523. "prologue": "",
  524. "query": [
  525. {
  526. "key": "title",
  527. "name": "Title",
  528. "optional": false,
  529. "type": "line"
  530. },
  531. {
  532. "key": "language",
  533. "name": "Language",
  534. "optional": false,
  535. "type": "line"
  536. }
  537. ]
  538. },
  539. "label": "Begin",
  540. "name": "begin"
  541. },
  542. "dragging": false,
  543. "height": 130,
  544. "id": "begin",
  545. "measured": {
  546. "height": 130,
  547. "width": 200
  548. },
  549. "position": {
  550. "x": -231.29149905979648,
  551. "y": 95.28494230291383
  552. },
  553. "positionAbsolute": {
  554. "x": -185.67257819905137,
  555. "y": 108.15225637884839
  556. },
  557. "selected": false,
  558. "sourcePosition": "left",
  559. "targetPosition": "right",
  560. "type": "beginNode",
  561. "width": 200
  562. },
  563. {
  564. "data": {
  565. "form": {},
  566. "label": "Answer",
  567. "name": "Interact_0"
  568. },
  569. "dragging": false,
  570. "height": 44,
  571. "id": "Answer:WittyBottlesJog",
  572. "measured": {
  573. "height": 44,
  574. "width": 200
  575. },
  576. "position": {
  577. "x": 1458.2651570288865,
  578. "y": 164.22699667633927
  579. },
  580. "positionAbsolute": {
  581. "x": 1462.7745767525992,
  582. "y": 231.9248108743051
  583. },
  584. "selected": false,
  585. "sourcePosition": "right",
  586. "targetPosition": "left",
  587. "type": "logicNode",
  588. "width": 200
  589. },
  590. {
  591. "data": {
  592. "form": {
  593. "delimiter": ",",
  594. "query": [
  595. {
  596. "component_id": "Generate:EveryCoinsStare",
  597. "type": "reference"
  598. }
  599. ]
  600. },
  601. "label": "Iteration",
  602. "name": "Search"
  603. },
  604. "dragging": false,
  605. "height": 192,
  606. "id": "Iteration:BlueClothsGrab",
  607. "measured": {
  608. "height": 192,
  609. "width": 334
  610. },
  611. "position": {
  612. "x": 432.63496522555613,
  613. "y": 228.82343789018051
  614. },
  615. "positionAbsolute": {
  616. "x": 441.29535207641436,
  617. "y": 291.9929929170084
  618. },
  619. "resizing": false,
  620. "selected": false,
  621. "sourcePosition": "right",
  622. "style": {
  623. "height": 337,
  624. "width": 356
  625. },
  626. "targetPosition": "left",
  627. "type": "group",
  628. "width": 334
  629. },
  630. {
  631. "data": {
  632. "form": {},
  633. "label": "IterationItem",
  634. "name": "IterationItem"
  635. },
  636. "dragging": false,
  637. "extent": "parent",
  638. "height": 44,
  639. "id": "IterationItem:RudeTablesSmile",
  640. "measured": {
  641. "height": 44,
  642. "width": 44
  643. },
  644. "parentId": "Iteration:BlueClothsGrab",
  645. "position": {
  646. "x": 22,
  647. "y": 10
  648. },
  649. "positionAbsolute": {
  650. "x": -261.5,
  651. "y": -288.14062500000006
  652. },
  653. "selected": false,
  654. "type": "iterationStartNode",
  655. "width": 44
  656. },
  657. {
  658. "data": {
  659. "form": {
  660. "query": [
  661. {
  662. "component_id": "IterationItem:RudeTablesSmile",
  663. "type": "reference"
  664. }
  665. ],
  666. "top_n": 10
  667. },
  668. "label": "Baidu",
  669. "name": "Baidu"
  670. },
  671. "dragging": false,
  672. "extent": "parent",
  673. "height": 64,
  674. "id": "Baidu:MeanBroomsMatter",
  675. "measured": {
  676. "height": 64,
  677. "width": 200
  678. },
  679. "parentId": "Iteration:BlueClothsGrab",
  680. "position": {
  681. "x": 200,
  682. "y": 0
  683. },
  684. "positionAbsolute": {
  685. "x": -83.49999999999999,
  686. "y": -298.14062500000006
  687. },
  688. "selected": false,
  689. "sourcePosition": "right",
  690. "targetPosition": "left",
  691. "type": "ragNode",
  692. "width": 200
  693. },
  694. {
  695. "data": {
  696. "form": {
  697. "delimiter": "\n",
  698. "query": [
  699. {
  700. "component_id": "Generate:RedWormsDouble",
  701. "type": "reference"
  702. }
  703. ]
  704. },
  705. "label": "Iteration",
  706. "name": "Sections"
  707. },
  708. "dragging": false,
  709. "height": 225,
  710. "id": "Iteration:ThreeParksChew",
  711. "measured": {
  712. "height": 225,
  713. "width": 315
  714. },
  715. "position": {
  716. "x": 888.9524716285371,
  717. "y": 75.91277516159235
  718. },
  719. "positionAbsolute": {
  720. "x": 891.9430519048244,
  721. "y": 39.64877134989487
  722. },
  723. "resizing": false,
  724. "selected": false,
  725. "sourcePosition": "right",
  726. "style": {
  727. "height": 438,
  728. "width": 328
  729. },
  730. "targetPosition": "left",
  731. "type": "group",
  732. "width": 315
  733. },
  734. {
  735. "data": {
  736. "form": {},
  737. "label": "IterationItem",
  738. "name": "IterationItem"
  739. },
  740. "dragging": false,
  741. "extent": "parent",
  742. "height": 44,
  743. "id": "IterationItem:OliveStatesSmoke",
  744. "measured": {
  745. "height": 44,
  746. "width": 44
  747. },
  748. "parentId": "Iteration:ThreeParksChew",
  749. "position": {
  750. "x": 24.66038685085823,
  751. "y": 37.00025154774299
  752. },
  753. "positionAbsolute": {
  754. "x": 780.5000000000002,
  755. "y": 432.859375
  756. },
  757. "selected": false,
  758. "type": "iterationStartNode",
  759. "width": 44
  760. },
  761. {
  762. "data": {
  763. "form": {
  764. "text": "It can generate a research report base on the title and language you provide."
  765. },
  766. "label": "Note",
  767. "name": "Usage"
  768. },
  769. "dragHandle": ".note-drag-handle",
  770. "dragging": false,
  771. "height": 168,
  772. "id": "Note:PoorMirrorsJump",
  773. "measured": {
  774. "height": 168,
  775. "width": 275
  776. },
  777. "position": {
  778. "x": -192.4712202594548,
  779. "y": -164.26382748469516
  780. },
  781. "resizing": false,
  782. "selected": false,
  783. "sourcePosition": "right",
  784. "targetPosition": "left",
  785. "type": "noteNode",
  786. "width": 275
  787. },
  788. {
  789. "data": {
  790. "form": {
  791. "text": "LLM provides a series of search engine queries related to the proposition. Comprehensive research can be conducted through queries from different perspectives."
  792. },
  793. "label": "Note",
  794. "name": "N-Query"
  795. },
  796. "dragHandle": ".note-drag-handle",
  797. "dragging": false,
  798. "height": 207,
  799. "id": "Note:TwoSingersFly",
  800. "measured": {
  801. "height": 207,
  802. "width": 256
  803. },
  804. "position": {
  805. "x": 90.71637834539166,
  806. "y": -160.7863367019141
  807. },
  808. "resizing": false,
  809. "selected": false,
  810. "sourcePosition": "right",
  811. "targetPosition": "left",
  812. "type": "noteNode",
  813. "width": 256
  814. },
  815. {
  816. "data": {
  817. "form": {
  818. "text": "LLM generates 4 subtitles for this report according to queries and title."
  819. },
  820. "label": "Note",
  821. "name": "N-Subtitles"
  822. },
  823. "dragHandle": ".note-drag-handle",
  824. "dragging": false,
  825. "id": "Note:SmoothAreasBet",
  826. "measured": {
  827. "height": 128,
  828. "width": 266
  829. },
  830. "position": {
  831. "x": 431.07789651000473,
  832. "y": -161.0756093374443
  833. },
  834. "selected": false,
  835. "sourcePosition": "right",
  836. "targetPosition": "left",
  837. "type": "noteNode"
  838. },
  839. {
  840. "data": {
  841. "form": {
  842. "text": "LLM generates a report for each query based on search result of each query.\nYou could change Baidu to other search engines."
  843. },
  844. "label": "Note",
  845. "name": "N-Search"
  846. },
  847. "dragHandle": ".note-drag-handle",
  848. "dragging": false,
  849. "height": 168,
  850. "id": "Note:CleanTablesCamp",
  851. "measured": {
  852. "height": 168,
  853. "width": 364
  854. },
  855. "position": {
  856. "x": 435.9578972976612,
  857. "y": 452.5021839330345
  858. },
  859. "resizing": false,
  860. "selected": false,
  861. "sourcePosition": "right",
  862. "targetPosition": "left",
  863. "type": "noteNode",
  864. "width": 364
  865. },
  866. {
  867. "data": {
  868. "form": {
  869. "text": "LLM generates 4 sub-sections for 4 subtitles based on the report of search engine result."
  870. },
  871. "label": "Note",
  872. "name": "N-Sections"
  873. },
  874. "dragHandle": ".note-drag-handle",
  875. "dragging": false,
  876. "height": 142,
  877. "id": "Note:FamousToesReply",
  878. "measured": {
  879. "height": 142,
  880. "width": 336
  881. },
  882. "position": {
  883. "x": 881.4352587545767,
  884. "y": -165.7333893115248
  885. },
  886. "resizing": false,
  887. "selected": false,
  888. "sourcePosition": "right",
  889. "targetPosition": "left",
  890. "type": "noteNode",
  891. "width": 336
  892. },
  893. {
  894. "data": {
  895. "form": {
  896. "cite": false,
  897. "frequencyPenaltyEnabled": true,
  898. "frequency_penalty": 0.7,
  899. "llm_id": "deepseek-chat@DeepSeek",
  900. "maxTokensEnabled": true,
  901. "max_tokens": 256,
  902. "message_history_window_size": 1,
  903. "parameter": "Precise",
  904. "parameters": [],
  905. "presencePenaltyEnabled": true,
  906. "presence_penalty": 0.4,
  907. "prompt": "<instruction>\n<task_description>\nGenerate a series of appropriate search engine queries to break down questions based on user inquiries\n</task_description>\n\n<examples>\n<example>\nInput: User asks how to learn programming\nOutput: programming learning methods, programming tutorials for beginners\n</example>\n\n<example>\nInput: User wants to understand latest technology trends \nOutput: tech trends 2024, latest technology news\n</example>\n\n<example>\nInput: User seeks healthy eating advice\nOutput: healthy eating guide, balanced nutrition diet\n</example>\n</examples>\n\n<instructions>\n1. Take user's question as input.\n2. Identify relevant keywords or phrases based on the topic of user's question.\n3. Use these keywords or phrases to make search engine queries.\n4. Generate a series of appropriate search engine queries to help break down user's question.\n5. Ensure output content does not contain any xml tags.\n6. The output must be pure and conform to the <example> style without other explanations.\n7. Break down into at least 4-6 subproblems.\n8. Output is separated only by commas.\n</instructions>\n\n\ntitle: {begin@title}\nlanguage: {begin@language}\nThe output must be pure and conform to the <example> style without other explanations.\nOutput is separated only by commas.\nBreak down into at least 4-6 subproblems.\n\nOutput:",
  908. "temperature": 0.1,
  909. "temperatureEnabled": true,
  910. "topPEnabled": true,
  911. "top_p": 0.3
  912. },
  913. "label": "Generate",
  914. "name": "GenQuery"
  915. },
  916. "dragging": false,
  917. "id": "Generate:EveryCoinsStare",
  918. "measured": {
  919. "height": 106,
  920. "width": 200
  921. },
  922. "position": {
  923. "x": 42.60311386535324,
  924. "y": 107.45415912015176
  925. },
  926. "selected": false,
  927. "sourcePosition": "right",
  928. "targetPosition": "left",
  929. "type": "generateNode"
  930. },
  931. {
  932. "data": {
  933. "form": {
  934. "cite": false,
  935. "frequencyPenaltyEnabled": true,
  936. "frequency_penalty": 0.7,
  937. "llm_id": "deepseek-chat@DeepSeek",
  938. "maxTokensEnabled": false,
  939. "max_tokens": 256,
  940. "message_history_window_size": 1,
  941. "parameter": "Precise",
  942. "parameters": [],
  943. "presencePenaltyEnabled": true,
  944. "presence_penalty": 0.4,
  945. "prompt": "According to query: ' {Generate:EveryCoinsStare}',for ' {begin@title}', generate 3 to 5 sub-titles.\n\n<instructions>\nPlease generate 4 subheadings for the main title following these steps:\n - 1. Carefully read the provided main title and related content\n - 2. Analyze the core theme and key information points of the main title\n - 3. Ensure the generated subheadings maintain consistency and relevance with the main title\n - 4. Each subheading should:\n - Be concise and appropriate in length\n - Highlight a unique angle or key point\n - Capture readers' interest\n - Match the overall style and tone of the article\n - 5. Between subheadings:\n - Content should not overlap\n - Logical order should be maintained\n - Should collectively support the main title\n - Use numerical sequence (1, 2, 3...) to mark each subheading\n - 6. Output format requirements:\n - Each subheading on a separate line\n - No XML tags included\n - Output subheadings content only\n</instructions>\n\nlanguage: {begin@language}\nGenerate a series of appropriate sub-title to help break down ' {begin@title}'.\nBreaks down complex topics into manageable subtopics.\n\nOutput:",
  946. "temperature": 0.1,
  947. "temperatureEnabled": true,
  948. "topPEnabled": true,
  949. "top_p": 0.3
  950. },
  951. "label": "Generate",
  952. "name": "Subtitles"
  953. },
  954. "dragging": false,
  955. "id": "Generate:RedWormsDouble",
  956. "measured": {
  957. "height": 106,
  958. "width": 200
  959. },
  960. "position": {
  961. "x": 433.41522248658606,
  962. "y": 14.302437349777136
  963. },
  964. "selected": false,
  965. "sourcePosition": "right",
  966. "targetPosition": "left",
  967. "type": "generateNode"
  968. },
  969. {
  970. "data": {
  971. "form": {
  972. "cite": false,
  973. "frequencyPenaltyEnabled": true,
  974. "frequency_penalty": 0.7,
  975. "llm_id": "deepseek-chat@DeepSeek",
  976. "maxTokensEnabled": false,
  977. "max_tokens": 256,
  978. "message_history_window_size": 1,
  979. "parameter": "Precise",
  980. "parameters": [],
  981. "presencePenaltyEnabled": true,
  982. "presence_penalty": 0.4,
  983. "prompt": "Your goal is to provide answers based on information from the internet. \nYou must use the provided search results to find relevant online information. \nYou should never use your own knowledge to answer questions.\nPlease include relevant url sources in the end of your answers.\n{Baidu:MeanBroomsMatter}\n\n\n\n\n\nlanguage: {begin@language}\n\n\n \" {Baidu:MeanBroomsMatter}\" \n\n\n\n\nUsing the above information, answer the following question or topic: \" {IterationItem:RudeTablesSmile} \"\nin a detailed report — The report should focus on the answer to the question, should be well structured, informative, in depth, with facts and numbers if available, a minimum of 1,200 words and with markdown syntax and apa format. Write all source urls at the end of the report in apa format. You should write your report only based on the given information and nothing else.",
  984. "temperature": 0.1,
  985. "temperatureEnabled": true,
  986. "topPEnabled": true,
  987. "top_p": 0.3
  988. },
  989. "label": "Generate",
  990. "name": "GenSearchReport"
  991. },
  992. "dragging": false,
  993. "extent": "parent",
  994. "id": "Generate:YoungClownsKnock",
  995. "measured": {
  996. "height": 106,
  997. "width": 200
  998. },
  999. "parentId": "Iteration:BlueClothsGrab",
  1000. "position": {
  1001. "x": 115.34644687476163,
  1002. "y": 73.07611243293042
  1003. },
  1004. "selected": false,
  1005. "sourcePosition": "right",
  1006. "targetPosition": "left",
  1007. "type": "generateNode"
  1008. },
  1009. {
  1010. "data": {
  1011. "form": {
  1012. "cite": false,
  1013. "frequencyPenaltyEnabled": true,
  1014. "frequency_penalty": 0.7,
  1015. "llm_id": "deepseek-chat@DeepSeek",
  1016. "maxTokensEnabled": false,
  1017. "max_tokens": 256,
  1018. "message_history_window_size": 1,
  1019. "parameter": "Precise",
  1020. "parameters": [],
  1021. "presencePenaltyEnabled": true,
  1022. "presence_penalty": 0.4,
  1023. "prompt": "In a detailed report — The report should focus on the answer to {IterationItem:OliveStatesSmoke}and nothing else.\n\n\nLanguage: {begin@language}\nContext as bellow: \n\n\"{Iteration:BlueClothsGrab}\"\n\nProvide the research report in the specified language, avoiding small talk.\nThe main content is provided in markdown format\nWrite all source urls at the end of the report in apa format. ",
  1024. "temperature": 0.1,
  1025. "temperatureEnabled": true,
  1026. "topPEnabled": true,
  1027. "top_p": 0.3
  1028. },
  1029. "label": "Generate",
  1030. "name": "Subtitle-content"
  1031. },
  1032. "dragging": false,
  1033. "extent": "parent",
  1034. "id": "Generate:RealLoopsVanish",
  1035. "measured": {
  1036. "height": 106,
  1037. "width": 200
  1038. },
  1039. "parentId": "Iteration:ThreeParksChew",
  1040. "position": {
  1041. "x": 189.94391141062363,
  1042. "y": 5.408501635610101
  1043. },
  1044. "selected": false,
  1045. "sourcePosition": "right",
  1046. "targetPosition": "left",
  1047. "type": "generateNode"
  1048. },
  1049. {
  1050. "data": {
  1051. "form": {
  1052. "content": "<h2> {IterationItem:OliveStatesSmoke}</h2>\n<div> {Generate:RealLoopsVanish}</div>",
  1053. "parameters": []
  1054. },
  1055. "label": "Template",
  1056. "name": "Sub-section"
  1057. },
  1058. "dragging": false,
  1059. "extent": "parent",
  1060. "id": "Template:SpottyWaspsLose",
  1061. "measured": {
  1062. "height": 76,
  1063. "width": 200
  1064. },
  1065. "parentId": "Iteration:ThreeParksChew",
  1066. "position": {
  1067. "x": 107.51010102435532,
  1068. "y": 127.82322102671017
  1069. },
  1070. "selected": false,
  1071. "sourcePosition": "right",
  1072. "targetPosition": "left",
  1073. "type": "templateNode"
  1074. },
  1075. {
  1076. "data": {
  1077. "form": {
  1078. "content": "<h1> {begin@title}</h1>\n\n\n\n{Iteration:ThreeParksChew}",
  1079. "parameters": []
  1080. },
  1081. "label": "Template",
  1082. "name": "Article"
  1083. },
  1084. "dragging": false,
  1085. "id": "Template:LegalDoorsAct",
  1086. "measured": {
  1087. "height": 76,
  1088. "width": 200
  1089. },
  1090. "position": {
  1091. "x": 1209.0758608851872,
  1092. "y": 149.01984563839733
  1093. },
  1094. "selected": false,
  1095. "sourcePosition": "right",
  1096. "targetPosition": "left",
  1097. "type": "templateNode"
  1098. }
  1099. ]
  1100. },
  1101. "history": [],
  1102. "messages": [],
  1103. "path": [],
  1104. "reference": []
  1105. },
  1106. "avatar": ""
  1107. }