| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 | 
							- import copy
 - import re
 - 
 - from api.db import ParserType
 - from rag.nlp import huqie, tokenize, tokenize_table, add_positions, bullets_category, title_frequency
 - from deepdoc.parser import PdfParser
 - from rag.utils import num_tokens_from_string
 - 
 - 
 - class Pdf(PdfParser):
 -     def __init__(self):
 -         self.model_speciess = ParserType.MANUAL.value
 -         super().__init__()
 - 
 -     def __call__(self, filename, binary=None, from_page=0,
 -                  to_page=100000, zoomin=3, callback=None):
 -         from timeit import default_timer as timer
 -         start = timer()
 -         callback(msg="OCR is  running...")
 -         self.__images__(
 -             filename if not binary else binary,
 -             zoomin,
 -             from_page,
 -             to_page,
 -             callback
 -         )
 -         callback(msg="OCR finished.")
 -         #for bb in self.boxes:
 -         #    for b in bb:
 -         #        print(b)
 -         print("OCR:", timer()-start)
 - 
 -         def tag(pn, left, right, top, bottom):
 -             return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##" \
 -                 .format(pn, left, right, top, bottom)
 - 
 -         self._layouts_rec(zoomin)
 -         callback(0.65, "Layout analysis finished.")
 -         print("paddle layouts:", timer() - start)
 -         self._table_transformer_job(zoomin)
 -         callback(0.67, "Table analysis finished.")
 -         self._text_merge()
 -         tbls = self._extract_table_figure(True, zoomin, True, True)
 -         self._concat_downward()
 -         self._filter_forpages()
 -         callback(0.68, "Text merging finished")
 - 
 -         # clean mess
 -         for b in self.boxes:
 -             b["text"] = re.sub(r"([\t  ]|\u3000){2,}", " ", b["text"].strip())
 - 
 -         # set pivot using the most frequent type of title,
 -         # then merge between 2 pivot
 -         if len(self.boxes)>0 and len(self.outlines)/len(self.boxes) > 0.1:
 -             max_lvl = max([lvl for _, lvl in self.outlines])
 -             most_level = max(0, max_lvl-1)
 -             levels = []
 -             for b in self.boxes:
 -                 for t,lvl in self.outlines:
 -                     tks = set([t[i]+t[i+1] for i in range(len(t)-1)])
 -                     tks_ = set([b["text"][i]+b["text"][i+1] for i in range(min(len(t), len(b["text"])-1))])
 -                     if len(set(tks & tks_))/max([len(tks), len(tks_), 1]) > 0.8:
 -                         levels.append(lvl)
 -                         break
 -                 else:
 -                     levels.append(max_lvl + 1)
 -         else:
 -             bull = bullets_category([b["text"] for b in self.boxes])
 -             most_level, levels = title_frequency(bull, [(b["text"], b.get("layout_no","")) for b in self.boxes])
 - 
 -         assert len(self.boxes) == len(levels)
 -         sec_ids = []
 -         sid = 0
 -         for i, lvl in enumerate(levels):
 -             if lvl <= most_level and i > 0 and lvl != levels[i-1]: sid += 1
 -             sec_ids.append(sid)
 -             #print(lvl, self.boxes[i]["text"], most_level, sid)
 - 
 -         sections = [(b["text"], sec_ids[i], self.get_position(b, zoomin)) for i, b in enumerate(self.boxes)]
 -         for (img, rows), poss in tbls:
 -             sections.append((rows if isinstance(rows, str) else rows[0], -1, [(p[0]+1-from_page, p[1], p[2], p[3], p[4]) for p in poss]))
 - 
 -         chunks = []
 -         last_sid = -2
 -         tk_cnt = 0
 -         for txt, sec_id, poss in sorted(sections, key=lambda x: (x[-1][0][0], x[-1][0][3], x[-1][0][1])):
 -             poss = "\t".join([tag(*pos) for pos in poss])
 -             if tk_cnt < 2048 and (sec_id == last_sid or sec_id == -1):
 -                 if chunks:
 -                     chunks[-1] += "\n" + txt + poss
 -                     tk_cnt += num_tokens_from_string(txt)
 -                     continue
 -             chunks.append(txt + poss)
 -             tk_cnt = num_tokens_from_string(txt)
 -             if sec_id >-1: last_sid = sec_id
 -         return chunks, tbls
 - 
 - 
 - def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
 -     """
 -         Only pdf is supported.
 -     """
 -     pdf_parser = None
 - 
 -     if re.search(r"\.pdf$", filename, re.IGNORECASE):
 -         pdf_parser = Pdf()
 -         cks, tbls = pdf_parser(filename if not binary else binary,
 -                            from_page=from_page, to_page=to_page, callback=callback)
 -     else: raise NotImplementedError("file type not supported yet(pdf supported)")
 -     doc = {
 -         "docnm_kwd": filename
 -     }
 -     doc["title_tks"] = huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", doc["docnm_kwd"]))
 -     doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
 -     # is it English
 -     eng = lang.lower() == "english"#pdf_parser.is_english
 - 
 -     res = tokenize_table(tbls, doc, eng)
 -     for ck in cks:
 -         d = copy.deepcopy(doc)
 -         d["image"], poss = pdf_parser.crop(ck, need_position=True)
 -         add_positions(d, poss)
 -         tokenize(d, pdf_parser.remove_tag(ck), eng)
 -         res.append(d)
 -     return res
 - 
 - 
 - 
 - if __name__ == "__main__":
 -     import sys
 -     def dummy(prog=None, msg=""):
 -         pass
 -     chunk(sys.argv[1], callback=dummy)
 
 
  |