Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

manual.py 5.0KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133
  1. import copy
  2. import re
  3. from api.db import ParserType
  4. from rag.nlp import huqie, tokenize, tokenize_table, add_positions, bullets_category, title_frequency
  5. from deepdoc.parser import PdfParser
  6. from rag.utils import num_tokens_from_string
  7. class Pdf(PdfParser):
  8. def __init__(self):
  9. self.model_speciess = ParserType.MANUAL.value
  10. super().__init__()
  11. def __call__(self, filename, binary=None, from_page=0,
  12. to_page=100000, zoomin=3, callback=None):
  13. from timeit import default_timer as timer
  14. start = timer()
  15. callback(msg="OCR is running...")
  16. self.__images__(
  17. filename if not binary else binary,
  18. zoomin,
  19. from_page,
  20. to_page,
  21. callback
  22. )
  23. callback(msg="OCR finished.")
  24. #for bb in self.boxes:
  25. # for b in bb:
  26. # print(b)
  27. print("OCR:", timer()-start)
  28. def tag(pn, left, right, top, bottom):
  29. return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##" \
  30. .format(pn, left, right, top, bottom)
  31. self._layouts_rec(zoomin)
  32. callback(0.65, "Layout analysis finished.")
  33. print("paddle layouts:", timer() - start)
  34. self._table_transformer_job(zoomin)
  35. callback(0.67, "Table analysis finished.")
  36. self._text_merge()
  37. tbls = self._extract_table_figure(True, zoomin, True, True)
  38. self._concat_downward()
  39. self._filter_forpages()
  40. callback(0.68, "Text merging finished")
  41. # clean mess
  42. for b in self.boxes:
  43. b["text"] = re.sub(r"([\t  ]|\u3000){2,}", " ", b["text"].strip())
  44. # set pivot using the most frequent type of title,
  45. # then merge between 2 pivot
  46. if len(self.boxes)>0 and len(self.outlines)/len(self.boxes) > 0.1:
  47. max_lvl = max([lvl for _, lvl in self.outlines])
  48. most_level = max(0, max_lvl-1)
  49. levels = []
  50. for b in self.boxes:
  51. for t,lvl in self.outlines:
  52. tks = set([t[i]+t[i+1] for i in range(len(t)-1)])
  53. tks_ = set([b["text"][i]+b["text"][i+1] for i in range(min(len(t), len(b["text"])-1))])
  54. if len(set(tks & tks_))/max([len(tks), len(tks_), 1]) > 0.8:
  55. levels.append(lvl)
  56. break
  57. else:
  58. levels.append(max_lvl + 1)
  59. else:
  60. bull = bullets_category([b["text"] for b in self.boxes])
  61. most_level, levels = title_frequency(bull, [(b["text"], b.get("layout_no","")) for b in self.boxes])
  62. assert len(self.boxes) == len(levels)
  63. sec_ids = []
  64. sid = 0
  65. for i, lvl in enumerate(levels):
  66. if lvl <= most_level and i > 0 and lvl != levels[i-1]: sid += 1
  67. sec_ids.append(sid)
  68. #print(lvl, self.boxes[i]["text"], most_level, sid)
  69. sections = [(b["text"], sec_ids[i], self.get_position(b, zoomin)) for i, b in enumerate(self.boxes)]
  70. for (img, rows), poss in tbls:
  71. sections.append((rows if isinstance(rows, str) else rows[0], -1, [(p[0]+1-from_page, p[1], p[2], p[3], p[4]) for p in poss]))
  72. chunks = []
  73. last_sid = -2
  74. tk_cnt = 0
  75. for txt, sec_id, poss in sorted(sections, key=lambda x: (x[-1][0][0], x[-1][0][3], x[-1][0][1])):
  76. poss = "\t".join([tag(*pos) for pos in poss])
  77. if tk_cnt < 2048 and (sec_id == last_sid or sec_id == -1):
  78. if chunks:
  79. chunks[-1] += "\n" + txt + poss
  80. tk_cnt += num_tokens_from_string(txt)
  81. continue
  82. chunks.append(txt + poss)
  83. tk_cnt = num_tokens_from_string(txt)
  84. if sec_id >-1: last_sid = sec_id
  85. return chunks, tbls
  86. def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
  87. """
  88. Only pdf is supported.
  89. """
  90. pdf_parser = None
  91. if re.search(r"\.pdf$", filename, re.IGNORECASE):
  92. pdf_parser = Pdf()
  93. cks, tbls = pdf_parser(filename if not binary else binary,
  94. from_page=from_page, to_page=to_page, callback=callback)
  95. else: raise NotImplementedError("file type not supported yet(pdf supported)")
  96. doc = {
  97. "docnm_kwd": filename
  98. }
  99. doc["title_tks"] = huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", doc["docnm_kwd"]))
  100. doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
  101. # is it English
  102. eng = lang.lower() == "english"#pdf_parser.is_english
  103. res = tokenize_table(tbls, doc, eng)
  104. for ck in cks:
  105. d = copy.deepcopy(doc)
  106. d["image"], poss = pdf_parser.crop(ck, need_position=True)
  107. add_positions(d, poss)
  108. tokenize(d, pdf_parser.remove_tag(ck), eng)
  109. res.append(d)
  110. return res
  111. if __name__ == "__main__":
  112. import sys
  113. def dummy(prog=None, msg=""):
  114. pass
  115. chunk(sys.argv[1], callback=dummy)