Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

recognizer.py 17KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452
  1. # Licensed under the Apache License, Version 2.0 (the "License");
  2. # you may not use this file except in compliance with the License.
  3. # You may obtain a copy of the License at
  4. #
  5. # http://www.apache.org/licenses/LICENSE-2.0
  6. #
  7. # Unless required by applicable law or agreed to in writing, software
  8. # distributed under the License is distributed on an "AS IS" BASIS,
  9. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. # See the License for the specific language governing permissions and
  11. # limitations under the License.
  12. #
  13. import os
  14. from copy import deepcopy
  15. import onnxruntime as ort
  16. from huggingface_hub import snapshot_download
  17. from api.utils.file_utils import get_project_base_directory
  18. from .operators import *
  19. class Recognizer(object):
  20. def __init__(self, label_list, task_name, model_dir=None):
  21. """
  22. If you have trouble downloading HuggingFace models, -_^ this might help!!
  23. For Linux:
  24. export HF_ENDPOINT=https://hf-mirror.com
  25. For Windows:
  26. Good luck
  27. ^_-
  28. """
  29. if not model_dir:
  30. model_dir = os.path.join(
  31. get_project_base_directory(),
  32. "rag/res/deepdoc")
  33. model_file_path = os.path.join(model_dir, task_name + ".onnx")
  34. if not os.path.exists(model_file_path):
  35. model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc",
  36. local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
  37. local_dir_use_symlinks=False)
  38. model_file_path = os.path.join(model_dir, task_name + ".onnx")
  39. else:
  40. model_file_path = os.path.join(model_dir, task_name + ".onnx")
  41. if not os.path.exists(model_file_path):
  42. raise ValueError("not find model file path {}".format(
  43. model_file_path))
  44. if False and ort.get_device() == "GPU":
  45. options = ort.SessionOptions()
  46. options.enable_cpu_mem_arena = False
  47. self.ort_sess = ort.InferenceSession(model_file_path, options=options, providers=[('CUDAExecutionProvider')])
  48. else:
  49. self.ort_sess = ort.InferenceSession(model_file_path, providers=['CPUExecutionProvider'])
  50. self.input_names = [node.name for node in self.ort_sess.get_inputs()]
  51. self.output_names = [node.name for node in self.ort_sess.get_outputs()]
  52. self.input_shape = self.ort_sess.get_inputs()[0].shape[2:4]
  53. self.label_list = label_list
  54. @staticmethod
  55. def sort_Y_firstly(arr, threashold):
  56. # sort using y1 first and then x1
  57. arr = sorted(arr, key=lambda r: (r["top"], r["x0"]))
  58. for i in range(len(arr) - 1):
  59. for j in range(i, -1, -1):
  60. # restore the order using th
  61. if abs(arr[j + 1]["top"] - arr[j]["top"]) < threashold \
  62. and arr[j + 1]["x0"] < arr[j]["x0"]:
  63. tmp = deepcopy(arr[j])
  64. arr[j] = deepcopy(arr[j + 1])
  65. arr[j + 1] = deepcopy(tmp)
  66. return arr
  67. @staticmethod
  68. def sort_X_firstly(arr, threashold, copy=True):
  69. # sort using y1 first and then x1
  70. arr = sorted(arr, key=lambda r: (r["x0"], r["top"]))
  71. for i in range(len(arr) - 1):
  72. for j in range(i, -1, -1):
  73. # restore the order using th
  74. if abs(arr[j + 1]["x0"] - arr[j]["x0"]) < threashold \
  75. and arr[j + 1]["top"] < arr[j]["top"]:
  76. tmp = deepcopy(arr[j]) if copy else arr[j]
  77. arr[j] = deepcopy(arr[j + 1]) if copy else arr[j + 1]
  78. arr[j + 1] = deepcopy(tmp) if copy else tmp
  79. return arr
  80. @staticmethod
  81. def sort_C_firstly(arr, thr=0):
  82. # sort using y1 first and then x1
  83. # sorted(arr, key=lambda r: (r["x0"], r["top"]))
  84. arr = Recognizer.sort_X_firstly(arr, thr)
  85. for i in range(len(arr) - 1):
  86. for j in range(i, -1, -1):
  87. # restore the order using th
  88. if "C" not in arr[j] or "C" not in arr[j + 1]:
  89. continue
  90. if arr[j + 1]["C"] < arr[j]["C"] \
  91. or (
  92. arr[j + 1]["C"] == arr[j]["C"]
  93. and arr[j + 1]["top"] < arr[j]["top"]
  94. ):
  95. tmp = arr[j]
  96. arr[j] = arr[j + 1]
  97. arr[j + 1] = tmp
  98. return arr
  99. return sorted(arr, key=lambda r: (r.get("C", r["x0"]), r["top"]))
  100. @staticmethod
  101. def sort_R_firstly(arr, thr=0):
  102. # sort using y1 first and then x1
  103. # sorted(arr, key=lambda r: (r["top"], r["x0"]))
  104. arr = Recognizer.sort_Y_firstly(arr, thr)
  105. for i in range(len(arr) - 1):
  106. for j in range(i, -1, -1):
  107. if "R" not in arr[j] or "R" not in arr[j + 1]:
  108. continue
  109. if arr[j + 1]["R"] < arr[j]["R"] \
  110. or (
  111. arr[j + 1]["R"] == arr[j]["R"]
  112. and arr[j + 1]["x0"] < arr[j]["x0"]
  113. ):
  114. tmp = arr[j]
  115. arr[j] = arr[j + 1]
  116. arr[j + 1] = tmp
  117. return arr
  118. @staticmethod
  119. def overlapped_area(a, b, ratio=True):
  120. tp, btm, x0, x1 = a["top"], a["bottom"], a["x0"], a["x1"]
  121. if b["x0"] > x1 or b["x1"] < x0:
  122. return 0
  123. if b["bottom"] < tp or b["top"] > btm:
  124. return 0
  125. x0_ = max(b["x0"], x0)
  126. x1_ = min(b["x1"], x1)
  127. assert x0_ <= x1_, "Fuckedup! T:{},B:{},X0:{},X1:{} ==> {}".format(
  128. tp, btm, x0, x1, b)
  129. tp_ = max(b["top"], tp)
  130. btm_ = min(b["bottom"], btm)
  131. assert tp_ <= btm_, "Fuckedup! T:{},B:{},X0:{},X1:{} => {}".format(
  132. tp, btm, x0, x1, b)
  133. ov = (btm_ - tp_) * (x1_ - x0_) if x1 - \
  134. x0 != 0 and btm - tp != 0 else 0
  135. if ov > 0 and ratio:
  136. ov /= (x1 - x0) * (btm - tp)
  137. return ov
  138. @staticmethod
  139. def layouts_cleanup(boxes, layouts, far=2, thr=0.7):
  140. def notOverlapped(a, b):
  141. return any([a["x1"] < b["x0"],
  142. a["x0"] > b["x1"],
  143. a["bottom"] < b["top"],
  144. a["top"] > b["bottom"]])
  145. i = 0
  146. while i + 1 < len(layouts):
  147. j = i + 1
  148. while j < min(i + far, len(layouts)) \
  149. and (layouts[i].get("type", "") != layouts[j].get("type", "")
  150. or notOverlapped(layouts[i], layouts[j])):
  151. j += 1
  152. if j >= min(i + far, len(layouts)):
  153. i += 1
  154. continue
  155. if Recognizer.overlapped_area(layouts[i], layouts[j]) < thr \
  156. and Recognizer.overlapped_area(layouts[j], layouts[i]) < thr:
  157. i += 1
  158. continue
  159. if layouts[i].get("score") and layouts[j].get("score"):
  160. if layouts[i]["score"] > layouts[j]["score"]:
  161. layouts.pop(j)
  162. else:
  163. layouts.pop(i)
  164. continue
  165. area_i, area_i_1 = 0, 0
  166. for b in boxes:
  167. if not notOverlapped(b, layouts[i]):
  168. area_i += Recognizer.overlapped_area(b, layouts[i], False)
  169. if not notOverlapped(b, layouts[j]):
  170. area_i_1 += Recognizer.overlapped_area(b, layouts[j], False)
  171. if area_i > area_i_1:
  172. layouts.pop(j)
  173. else:
  174. layouts.pop(i)
  175. return layouts
  176. def create_inputs(self, imgs, im_info):
  177. """generate input for different model type
  178. Args:
  179. imgs (list(numpy)): list of images (np.ndarray)
  180. im_info (list(dict)): list of image info
  181. Returns:
  182. inputs (dict): input of model
  183. """
  184. inputs = {}
  185. im_shape = []
  186. scale_factor = []
  187. if len(imgs) == 1:
  188. inputs['image'] = np.array((imgs[0],)).astype('float32')
  189. inputs['im_shape'] = np.array(
  190. (im_info[0]['im_shape'],)).astype('float32')
  191. inputs['scale_factor'] = np.array(
  192. (im_info[0]['scale_factor'],)).astype('float32')
  193. return inputs
  194. for e in im_info:
  195. im_shape.append(np.array((e['im_shape'],)).astype('float32'))
  196. scale_factor.append(np.array((e['scale_factor'],)).astype('float32'))
  197. inputs['im_shape'] = np.concatenate(im_shape, axis=0)
  198. inputs['scale_factor'] = np.concatenate(scale_factor, axis=0)
  199. imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
  200. max_shape_h = max([e[0] for e in imgs_shape])
  201. max_shape_w = max([e[1] for e in imgs_shape])
  202. padding_imgs = []
  203. for img in imgs:
  204. im_c, im_h, im_w = img.shape[:]
  205. padding_im = np.zeros(
  206. (im_c, max_shape_h, max_shape_w), dtype=np.float32)
  207. padding_im[:, :im_h, :im_w] = img
  208. padding_imgs.append(padding_im)
  209. inputs['image'] = np.stack(padding_imgs, axis=0)
  210. return inputs
  211. @staticmethod
  212. def find_overlapped(box, boxes_sorted_by_y, naive=False):
  213. if not boxes_sorted_by_y:
  214. return
  215. bxs = boxes_sorted_by_y
  216. s, e, ii = 0, len(bxs), 0
  217. while s < e and not naive:
  218. ii = (e + s) // 2
  219. pv = bxs[ii]
  220. if box["bottom"] < pv["top"]:
  221. e = ii
  222. continue
  223. if box["top"] > pv["bottom"]:
  224. s = ii + 1
  225. continue
  226. break
  227. while s < ii:
  228. if box["top"] > bxs[s]["bottom"]:
  229. s += 1
  230. break
  231. while e - 1 > ii:
  232. if box["bottom"] < bxs[e - 1]["top"]:
  233. e -= 1
  234. break
  235. max_overlaped_i, max_overlaped = None, 0
  236. for i in range(s, e):
  237. ov = Recognizer.overlapped_area(bxs[i], box)
  238. if ov <= max_overlaped:
  239. continue
  240. max_overlaped_i = i
  241. max_overlaped = ov
  242. return max_overlaped_i
  243. @staticmethod
  244. def find_horizontally_tightest_fit(box, boxes):
  245. if not boxes:
  246. return
  247. min_dis, min_i = 1000000, None
  248. for i,b in enumerate(boxes):
  249. if box.get("layoutno", "0") != b.get("layoutno", "0"): continue
  250. dis = min(abs(box["x0"] - b["x0"]), abs(box["x1"] - b["x1"]), abs(box["x0"]+box["x1"] - b["x1"] - b["x0"])/2)
  251. if dis < min_dis:
  252. min_i = i
  253. min_dis = dis
  254. return min_i
  255. @staticmethod
  256. def find_overlapped_with_threashold(box, boxes, thr=0.3):
  257. if not boxes:
  258. return
  259. max_overlapped_i, max_overlapped, _max_overlapped = None, thr, 0
  260. s, e = 0, len(boxes)
  261. for i in range(s, e):
  262. ov = Recognizer.overlapped_area(box, boxes[i])
  263. _ov = Recognizer.overlapped_area(boxes[i], box)
  264. if (ov, _ov) < (max_overlapped, _max_overlapped):
  265. continue
  266. max_overlapped_i = i
  267. max_overlapped = ov
  268. _max_overlapped = _ov
  269. return max_overlapped_i
  270. def preprocess(self, image_list):
  271. inputs = []
  272. if "scale_factor" in self.input_names:
  273. preprocess_ops = []
  274. for op_info in [
  275. {'interp': 2, 'keep_ratio': False, 'target_size': [800, 608], 'type': 'LinearResize'},
  276. {'is_scale': True, 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'type': 'StandardizeImage'},
  277. {'type': 'Permute'},
  278. {'stride': 32, 'type': 'PadStride'}
  279. ]:
  280. new_op_info = op_info.copy()
  281. op_type = new_op_info.pop('type')
  282. preprocess_ops.append(eval(op_type)(**new_op_info))
  283. for im_path in image_list:
  284. im, im_info = preprocess(im_path, preprocess_ops)
  285. inputs.append({"image": np.array((im,)).astype('float32'),
  286. "scale_factor": np.array((im_info["scale_factor"],)).astype('float32')})
  287. else:
  288. hh, ww = self.input_shape
  289. for img in image_list:
  290. h, w = img.shape[:2]
  291. img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
  292. img = cv2.resize(np.array(img).astype('float32'), (ww, hh))
  293. # Scale input pixel values to 0 to 1
  294. img /= 255.0
  295. img = img.transpose(2, 0, 1)
  296. img = img[np.newaxis, :, :, :].astype(np.float32)
  297. inputs.append({self.input_names[0]: img, "scale_factor": [w/ww, h/hh]})
  298. return inputs
  299. def postprocess(self, boxes, inputs, thr):
  300. if "scale_factor" in self.input_names:
  301. bb = []
  302. for b in boxes:
  303. clsid, bbox, score = int(b[0]), b[2:], b[1]
  304. if score < thr:
  305. continue
  306. if clsid >= len(self.label_list):
  307. continue
  308. bb.append({
  309. "type": self.label_list[clsid].lower(),
  310. "bbox": [float(t) for t in bbox.tolist()],
  311. "score": float(score)
  312. })
  313. return bb
  314. def xywh2xyxy(x):
  315. # [x, y, w, h] to [x1, y1, x2, y2]
  316. y = np.copy(x)
  317. y[:, 0] = x[:, 0] - x[:, 2] / 2
  318. y[:, 1] = x[:, 1] - x[:, 3] / 2
  319. y[:, 2] = x[:, 0] + x[:, 2] / 2
  320. y[:, 3] = x[:, 1] + x[:, 3] / 2
  321. return y
  322. def compute_iou(box, boxes):
  323. # Compute xmin, ymin, xmax, ymax for both boxes
  324. xmin = np.maximum(box[0], boxes[:, 0])
  325. ymin = np.maximum(box[1], boxes[:, 1])
  326. xmax = np.minimum(box[2], boxes[:, 2])
  327. ymax = np.minimum(box[3], boxes[:, 3])
  328. # Compute intersection area
  329. intersection_area = np.maximum(0, xmax - xmin) * np.maximum(0, ymax - ymin)
  330. # Compute union area
  331. box_area = (box[2] - box[0]) * (box[3] - box[1])
  332. boxes_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
  333. union_area = box_area + boxes_area - intersection_area
  334. # Compute IoU
  335. iou = intersection_area / union_area
  336. return iou
  337. def iou_filter(boxes, scores, iou_threshold):
  338. sorted_indices = np.argsort(scores)[::-1]
  339. keep_boxes = []
  340. while sorted_indices.size > 0:
  341. # Pick the last box
  342. box_id = sorted_indices[0]
  343. keep_boxes.append(box_id)
  344. # Compute IoU of the picked box with the rest
  345. ious = compute_iou(boxes[box_id, :], boxes[sorted_indices[1:], :])
  346. # Remove boxes with IoU over the threshold
  347. keep_indices = np.where(ious < iou_threshold)[0]
  348. # print(keep_indices.shape, sorted_indices.shape)
  349. sorted_indices = sorted_indices[keep_indices + 1]
  350. return keep_boxes
  351. boxes = np.squeeze(boxes).T
  352. # Filter out object confidence scores below threshold
  353. scores = np.max(boxes[:, 4:], axis=1)
  354. boxes = boxes[scores > thr, :]
  355. scores = scores[scores > thr]
  356. if len(boxes) == 0: return []
  357. # Get the class with the highest confidence
  358. class_ids = np.argmax(boxes[:, 4:], axis=1)
  359. boxes = boxes[:, :4]
  360. input_shape = np.array([inputs["scale_factor"][0], inputs["scale_factor"][1], inputs["scale_factor"][0], inputs["scale_factor"][1]])
  361. boxes = np.multiply(boxes, input_shape, dtype=np.float32)
  362. boxes = xywh2xyxy(boxes)
  363. unique_class_ids = np.unique(class_ids)
  364. indices = []
  365. for class_id in unique_class_ids:
  366. class_indices = np.where(class_ids == class_id)[0]
  367. class_boxes = boxes[class_indices, :]
  368. class_scores = scores[class_indices]
  369. class_keep_boxes = iou_filter(class_boxes, class_scores, 0.2)
  370. indices.extend(class_indices[class_keep_boxes])
  371. return [{
  372. "type": self.label_list[class_ids[i]].lower(),
  373. "bbox": [float(t) for t in boxes[i].tolist()],
  374. "score": float(scores[i])
  375. } for i in indices]
  376. def __call__(self, image_list, thr=0.7, batch_size=16):
  377. res = []
  378. imgs = []
  379. for i in range(len(image_list)):
  380. if not isinstance(image_list[i], np.ndarray):
  381. imgs.append(np.array(image_list[i]))
  382. else: imgs.append(image_list[i])
  383. batch_loop_cnt = math.ceil(float(len(imgs)) / batch_size)
  384. for i in range(batch_loop_cnt):
  385. start_index = i * batch_size
  386. end_index = min((i + 1) * batch_size, len(imgs))
  387. batch_image_list = imgs[start_index:end_index]
  388. inputs = self.preprocess(batch_image_list)
  389. print("preprocess")
  390. for ins in inputs:
  391. bb = self.postprocess(self.ort_sess.run(None, {k:v for k,v in ins.items() if k in self.input_names})[0], ins, thr)
  392. res.append(bb)
  393. #seeit.save_results(image_list, res, self.label_list, threshold=thr)
  394. return res