| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592 |
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
-
- import re, copy, time, datetime, demjson3, \
- traceback, signal
- import numpy as np
- from deepdoc.parser.resume.entities import degrees, schools, corporations
- from rag.nlp import rag_tokenizer, surname
- from xpinyin import Pinyin
- from contextlib import contextmanager
-
-
- class TimeoutException(Exception): pass
-
-
- @contextmanager
- def time_limit(seconds):
- def signal_handler(signum, frame):
- raise TimeoutException("Timed out!")
-
- signal.signal(signal.SIGALRM, signal_handler)
- signal.alarm(seconds)
- try:
- yield
- finally:
- signal.alarm(0)
-
-
- ENV = None
- PY = Pinyin()
-
-
- def rmHtmlTag(line):
- return re.sub(r"<[a-z0-9.\"=';,:\+_/ -]+>", " ", line, 100000, re.IGNORECASE)
-
-
- def highest_degree(dg):
- if not dg: return ""
- if type(dg) == type(""): dg = [dg]
- m = {"初中": 0, "高中": 1, "中专": 2, "大专": 3, "专升本": 4, "本科": 5, "硕士": 6, "博士": 7, "博士后": 8}
- return sorted([(d, m.get(d, -1)) for d in dg], key=lambda x: x[1] * -1)[0][0]
-
-
- def forEdu(cv):
- if not cv.get("education_obj"):
- cv["integerity_flt"] *= 0.8
- return cv
-
- first_fea, fea, maj, fmaj, deg, fdeg, sch, fsch, st_dt, ed_dt = [], [], [], [], [], [], [], [], [], []
- edu_nst = []
- edu_end_dt = ""
- cv["school_rank_int"] = 1000000
- for ii, n in enumerate(sorted(cv["education_obj"], key=lambda x: x.get("start_time", "3"))):
- e = {}
- if n.get("end_time"):
- if n["end_time"] > edu_end_dt: edu_end_dt = n["end_time"]
- try:
- dt = n["end_time"]
- if re.match(r"[0-9]{9,}", dt): dt = turnTm2Dt(dt)
- y, m, d = getYMD(dt)
- ed_dt.append(str(y))
- e["end_dt_kwd"] = str(y)
- except Exception as e:
- pass
- if n.get("start_time"):
- try:
- dt = n["start_time"]
- if re.match(r"[0-9]{9,}", dt): dt = turnTm2Dt(dt)
- y, m, d = getYMD(dt)
- st_dt.append(str(y))
- e["start_dt_kwd"] = str(y)
- except Exception as e:
- pass
-
- r = schools.select(n.get("school_name", ""))
- if r:
- if str(r.get("type", "")) == "1": fea.append("211")
- if str(r.get("type", "")) == "2": fea.append("211")
- if str(r.get("is_abroad", "")) == "1": fea.append("留学")
- if str(r.get("is_double_first", "")) == "1": fea.append("双一流")
- if str(r.get("is_985", "")) == "1": fea.append("985")
- if str(r.get("is_world_known", "")) == "1": fea.append("海外知名")
- if r.get("rank") and cv["school_rank_int"] > r["rank"]: cv["school_rank_int"] = r["rank"]
-
- if n.get("school_name") and isinstance(n["school_name"], str):
- sch.append(re.sub(r"(211|985|重点大学|[,&;;-])", "", n["school_name"]))
- e["sch_nm_kwd"] = sch[-1]
- fea.append(rag_tokenizer.fine_grained_tokenize(rag_tokenizer.tokenize(n.get("school_name", ""))).split(" ")[-1])
-
- if n.get("discipline_name") and isinstance(n["discipline_name"], str):
- maj.append(n["discipline_name"])
- e["major_kwd"] = n["discipline_name"]
-
- if not n.get("degree") and "985" in fea and not first_fea: n["degree"] = "1"
-
- if n.get("degree"):
- d = degrees.get_name(n["degree"])
- if d: e["degree_kwd"] = d
- if d == "本科" and ("专科" in deg or "专升本" in deg or "中专" in deg or "大专" in deg or re.search(r"(成人|自考|自学考试)",
- n.get(
- "school_name",
- ""))): d = "专升本"
- if d: deg.append(d)
-
- # for first degree
- if not fdeg and d in ["中专", "专升本", "专科", "本科", "大专"]:
- fdeg = [d]
- if n.get("school_name"): fsch = [n["school_name"]]
- if n.get("discipline_name"): fmaj = [n["discipline_name"]]
- first_fea = copy.deepcopy(fea)
-
- edu_nst.append(e)
-
- cv["sch_rank_kwd"] = []
- if cv["school_rank_int"] <= 20 \
- or ("海外名校" in fea and cv["school_rank_int"] <= 200):
- cv["sch_rank_kwd"].append("顶尖学校")
- elif cv["school_rank_int"] <= 50 and cv["school_rank_int"] > 20 \
- or ("海外名校" in fea and cv["school_rank_int"] <= 500 and \
- cv["school_rank_int"] > 200):
- cv["sch_rank_kwd"].append("精英学校")
- elif cv["school_rank_int"] > 50 and ("985" in fea or "211" in fea) \
- or ("海外名校" in fea and cv["school_rank_int"] > 500):
- cv["sch_rank_kwd"].append("优质学校")
- else:
- cv["sch_rank_kwd"].append("一般学校")
-
- if edu_nst: cv["edu_nst"] = edu_nst
- if fea: cv["edu_fea_kwd"] = list(set(fea))
- if first_fea: cv["edu_first_fea_kwd"] = list(set(first_fea))
- if maj: cv["major_kwd"] = maj
- if fsch: cv["first_school_name_kwd"] = fsch
- if fdeg: cv["first_degree_kwd"] = fdeg
- if fmaj: cv["first_major_kwd"] = fmaj
- if st_dt: cv["edu_start_kwd"] = st_dt
- if ed_dt: cv["edu_end_kwd"] = ed_dt
- if ed_dt: cv["edu_end_int"] = max([int(t) for t in ed_dt])
- if deg:
- if "本科" in deg and "专科" in deg:
- deg.append("专升本")
- deg = [d for d in deg if d != '本科']
- cv["degree_kwd"] = deg
- cv["highest_degree_kwd"] = highest_degree(deg)
- if edu_end_dt:
- try:
- if re.match(r"[0-9]{9,}", edu_end_dt): edu_end_dt = turnTm2Dt(edu_end_dt)
- if edu_end_dt.strip("\n") == "至今": edu_end_dt = cv.get("updated_at_dt", str(datetime.date.today()))
- y, m, d = getYMD(edu_end_dt)
- cv["work_exp_flt"] = min(int(str(datetime.date.today())[0:4]) - int(y), cv.get("work_exp_flt", 1000))
- except Exception as e:
- print("EXCEPTION: ", e, edu_end_dt, cv.get("work_exp_flt"))
- if sch:
- cv["school_name_kwd"] = sch
- if (len(cv.get("degree_kwd", [])) >= 1 and "本科" in cv["degree_kwd"]) \
- or all([c.lower() in ["硕士", "博士", "mba", "博士后"] for c in cv.get("degree_kwd", [])]) \
- or not cv.get("degree_kwd"):
- for c in sch:
- if schools.is_good(c):
- if "tag_kwd" not in cv: cv["tag_kwd"] = []
- cv["tag_kwd"].append("好学校")
- cv["tag_kwd"].append("好学历")
- break
- if (len(cv.get("degree_kwd", [])) >= 1 and \
- "本科" in cv["degree_kwd"] and \
- any([d.lower() in ["硕士", "博士", "mba", "博士"] for d in cv.get("degree_kwd", [])])) \
- or all([d.lower() in ["硕士", "博士", "mba", "博士后"] for d in cv.get("degree_kwd", [])]) \
- or any([d in ["mba", "emba", "博士后"] for d in cv.get("degree_kwd", [])]):
- if "tag_kwd" not in cv: cv["tag_kwd"] = []
- if "好学历" not in cv["tag_kwd"]: cv["tag_kwd"].append("好学历")
-
- if cv.get("major_kwd"): cv["major_tks"] = rag_tokenizer.tokenize(" ".join(maj))
- if cv.get("school_name_kwd"): cv["school_name_tks"] = rag_tokenizer.tokenize(" ".join(sch))
- if cv.get("first_school_name_kwd"): cv["first_school_name_tks"] = rag_tokenizer.tokenize(" ".join(fsch))
- if cv.get("first_major_kwd"): cv["first_major_tks"] = rag_tokenizer.tokenize(" ".join(fmaj))
-
- return cv
-
-
- def forProj(cv):
- if not cv.get("project_obj"): return cv
-
- pro_nms, desc = [], []
- for i, n in enumerate(
- sorted(cv.get("project_obj", []), key=lambda x: str(x.get("updated_at", "")) if type(x) == type({}) else "",
- reverse=True)):
- if n.get("name"): pro_nms.append(n["name"])
- if n.get("describe"): desc.append(str(n["describe"]))
- if n.get("responsibilities"): desc.append(str(n["responsibilities"]))
- if n.get("achivement"): desc.append(str(n["achivement"]))
-
- if pro_nms:
- # cv["pro_nms_tks"] = rag_tokenizer.tokenize(" ".join(pro_nms))
- cv["project_name_tks"] = rag_tokenizer.tokenize(pro_nms[0])
- if desc:
- cv["pro_desc_ltks"] = rag_tokenizer.tokenize(rmHtmlTag(" ".join(desc)))
- cv["project_desc_ltks"] = rag_tokenizer.tokenize(rmHtmlTag(desc[0]))
-
- return cv
-
-
- def json_loads(line):
- return demjson3.decode(re.sub(r": *(True|False)", r": '\1'", line))
-
-
- def forWork(cv):
- if not cv.get("work_obj"):
- cv["integerity_flt"] *= 0.7
- return cv
-
- flds = ["position_name", "corporation_name", "corporation_id", "responsibilities",
- "industry_name", "subordinates_count"]
- duas = []
- scales = []
- fea = {c: [] for c in flds}
- latest_job_tm = ""
- goodcorp = False
- goodcorp_ = False
- work_st_tm = ""
- corp_tags = []
- for i, n in enumerate(
- sorted(cv.get("work_obj", []), key=lambda x: str(x.get("start_time", "")) if type(x) == type({}) else "",
- reverse=True)):
- if type(n) == type(""):
- try:
- n = json_loads(n)
- except Exception as e:
- continue
-
- if n.get("start_time") and (not work_st_tm or n["start_time"] < work_st_tm): work_st_tm = n["start_time"]
- for c in flds:
- if not n.get(c) or str(n[c]) == '0':
- fea[c].append("")
- continue
- if c == "corporation_name":
- n[c] = corporations.corpNorm(n[c], False)
- if corporations.is_good(n[c]):
- if i == 0:
- goodcorp = True
- else:
- goodcorp_ = True
- ct = corporations.corp_tag(n[c])
- if i == 0:
- corp_tags.extend(ct)
- elif ct and ct[0] != "软外":
- corp_tags.extend([f"{t}(曾)" for t in ct])
-
- fea[c].append(rmHtmlTag(str(n[c]).lower()))
-
- y, m, d = getYMD(n.get("start_time"))
- if not y or not m: continue
- st = "%s-%02d-%02d" % (y, int(m), int(d))
- latest_job_tm = st
-
- y, m, d = getYMD(n.get("end_time"))
- if (not y or not m) and i > 0: continue
- if not y or not m or int(y) > 2022: y, m, d = getYMD(str(n.get("updated_at", "")))
- if not y or not m: continue
- ed = "%s-%02d-%02d" % (y, int(m), int(d))
-
- try:
- duas.append((datetime.datetime.strptime(ed, "%Y-%m-%d") - datetime.datetime.strptime(st, "%Y-%m-%d")).days)
- except Exception as e:
- print("kkkkkkkkkkkkkkkkkkkk", n.get("start_time"), n.get("end_time"))
-
- if n.get("scale"):
- r = re.search(r"^([0-9]+)", str(n["scale"]))
- if r: scales.append(int(r.group(1)))
-
- if goodcorp:
- if "tag_kwd" not in cv: cv["tag_kwd"] = []
- cv["tag_kwd"].append("好公司")
- if goodcorp_:
- if "tag_kwd" not in cv: cv["tag_kwd"] = []
- cv["tag_kwd"].append("好公司(曾)")
-
- if corp_tags:
- if "tag_kwd" not in cv: cv["tag_kwd"] = []
- cv["tag_kwd"].extend(corp_tags)
- cv["corp_tag_kwd"] = [c for c in corp_tags if re.match(r"(综合|行业)", c)]
-
- if latest_job_tm: cv["latest_job_dt"] = latest_job_tm
- if fea["corporation_id"]: cv["corporation_id"] = fea["corporation_id"]
-
- if fea["position_name"]:
- cv["position_name_tks"] = rag_tokenizer.tokenize(fea["position_name"][0])
- cv["position_name_sm_tks"] = rag_tokenizer.fine_grained_tokenize(cv["position_name_tks"])
- cv["pos_nm_tks"] = rag_tokenizer.tokenize(" ".join(fea["position_name"][1:]))
-
- if fea["industry_name"]:
- cv["industry_name_tks"] = rag_tokenizer.tokenize(fea["industry_name"][0])
- cv["industry_name_sm_tks"] = rag_tokenizer.fine_grained_tokenize(cv["industry_name_tks"])
- cv["indu_nm_tks"] = rag_tokenizer.tokenize(" ".join(fea["industry_name"][1:]))
-
- if fea["corporation_name"]:
- cv["corporation_name_kwd"] = fea["corporation_name"][0]
- cv["corp_nm_kwd"] = fea["corporation_name"]
- cv["corporation_name_tks"] = rag_tokenizer.tokenize(fea["corporation_name"][0])
- cv["corporation_name_sm_tks"] = rag_tokenizer.fine_grained_tokenize(cv["corporation_name_tks"])
- cv["corp_nm_tks"] = rag_tokenizer.tokenize(" ".join(fea["corporation_name"][1:]))
-
- if fea["responsibilities"]:
- cv["responsibilities_ltks"] = rag_tokenizer.tokenize(fea["responsibilities"][0])
- cv["resp_ltks"] = rag_tokenizer.tokenize(" ".join(fea["responsibilities"][1:]))
-
- if fea["subordinates_count"]: fea["subordinates_count"] = [int(i) for i in fea["subordinates_count"] if
- re.match(r"[^0-9]+$", str(i))]
- if fea["subordinates_count"]: cv["max_sub_cnt_int"] = np.max(fea["subordinates_count"])
-
- if type(cv.get("corporation_id")) == type(1): cv["corporation_id"] = [str(cv["corporation_id"])]
- if not cv.get("corporation_id"): cv["corporation_id"] = []
- for i in cv.get("corporation_id", []):
- cv["baike_flt"] = max(corporations.baike(i), cv["baike_flt"] if "baike_flt" in cv else 0)
-
- if work_st_tm:
- try:
- if re.match(r"[0-9]{9,}", work_st_tm): work_st_tm = turnTm2Dt(work_st_tm)
- y, m, d = getYMD(work_st_tm)
- cv["work_exp_flt"] = min(int(str(datetime.date.today())[0:4]) - int(y), cv.get("work_exp_flt", 1000))
- except Exception as e:
- print("EXCEPTION: ", e, work_st_tm, cv.get("work_exp_flt"))
-
- cv["job_num_int"] = 0
- if duas:
- cv["dua_flt"] = np.mean(duas)
- cv["cur_dua_int"] = duas[0]
- cv["job_num_int"] = len(duas)
- if scales: cv["scale_flt"] = np.max(scales)
- return cv
-
-
- def turnTm2Dt(b):
- if not b: return
- b = str(b).strip()
- if re.match(r"[0-9]{10,}", b): b = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(int(b[:10])))
- return b
-
-
- def getYMD(b):
- y, m, d = "", "", "01"
- if not b: return (y, m, d)
- b = turnTm2Dt(b)
- if re.match(r"[0-9]{4}", b): y = int(b[:4])
- r = re.search(r"[0-9]{4}.?([0-9]{1,2})", b)
- if r: m = r.group(1)
- r = re.search(r"[0-9]{4}.?[0-9]{,2}.?([0-9]{1,2})", b)
- if r: d = r.group(1)
- if not d or int(d) == 0 or int(d) > 31: d = "1"
- if not m or int(m) > 12 or int(m) < 1: m = "1"
- return (y, m, d)
-
-
- def birth(cv):
- if not cv.get("birth"):
- cv["integerity_flt"] *= 0.9
- return cv
- y, m, d = getYMD(cv["birth"])
- if not m or not y: return cv
- b = "%s-%02d-%02d" % (y, int(m), int(d))
- cv["birth_dt"] = b
- cv["birthday_kwd"] = "%02d%02d" % (int(m), int(d))
-
- cv["age_int"] = datetime.datetime.now().year - int(y)
- return cv
-
-
- def parse(cv):
- for k in cv.keys():
- if cv[k] == '\\N': cv[k] = ''
- # cv = cv.asDict()
- tks_fld = ["address", "corporation_name", "discipline_name", "email", "expect_city_names",
- "expect_industry_name", "expect_position_name", "industry_name", "industry_names", "name",
- "position_name", "school_name", "self_remark", "title_name"]
- small_tks_fld = ["corporation_name", "expect_position_name", "position_name", "school_name", "title_name"]
- kwd_fld = ["address", "city", "corporation_type", "degree", "discipline_name", "expect_city_names", "email",
- "expect_industry_name", "expect_position_name", "expect_type", "gender", "industry_name",
- "industry_names", "political_status", "position_name", "scale", "school_name", "phone", "tel"]
- num_fld = ["annual_salary", "annual_salary_from", "annual_salary_to", "expect_annual_salary", "expect_salary_from",
- "expect_salary_to", "salary_month"]
-
- is_fld = [
- ("is_fertility", "已育", "未育"),
- ("is_house", "有房", "没房"),
- ("is_management_experience", "有管理经验", "无管理经验"),
- ("is_marital", "已婚", "未婚"),
- ("is_oversea", "有海外经验", "无海外经验")
- ]
-
- rmkeys = []
- for k in cv.keys():
- if cv[k] is None: rmkeys.append(k)
- if (type(cv[k]) == type([]) or type(cv[k]) == type("")) and len(cv[k]) == 0: rmkeys.append(k)
- for k in rmkeys: del cv[k]
-
- integerity = 0.
- flds_num = 0.
-
- def hasValues(flds):
- nonlocal integerity, flds_num
- flds_num += len(flds)
- for f in flds:
- v = str(cv.get(f, ""))
- if len(v) > 0 and v != '0' and v != '[]': integerity += 1
-
- hasValues(tks_fld)
- hasValues(small_tks_fld)
- hasValues(kwd_fld)
- hasValues(num_fld)
- cv["integerity_flt"] = integerity / flds_num
-
- if cv.get("corporation_type"):
- for p, r in [(r"(公司|企业|其它|其他|Others*|\n|未填写|Enterprises|Company|companies)", ""),
- (r"[//.· <\((]+.*", ""),
- (r".*(合资|民企|股份制|中外|私营|个体|Private|创业|Owned|投资).*", "民营"),
- (r".*(机关|事业).*", "机关"),
- (r".*(非盈利|Non-profit).*", "非盈利"),
- (r".*(外企|外商|欧美|foreign|Institution|Australia|港资).*", "外企"),
- (r".*国有.*", "国企"),
- (r"[ ()\(\)人/·0-9-]+", ""),
- (r".*(元|规模|于|=|北京|上海|至今|中国|工资|州|shanghai|强|餐饮|融资|职).*", "")]:
- cv["corporation_type"] = re.sub(p, r, cv["corporation_type"], 1000, re.IGNORECASE)
- if len(cv["corporation_type"]) < 2: del cv["corporation_type"]
-
- if cv.get("political_status"):
- for p, r in [
- (r".*党员.*", "党员"),
- (r".*(无党派|公民).*", "群众"),
- (r".*团员.*", "团员")]:
- cv["political_status"] = re.sub(p, r, cv["political_status"])
- if not re.search(r"[党团群]", cv["political_status"]): del cv["political_status"]
-
- if cv.get("phone"): cv["phone"] = re.sub(r"^0*86([0-9]{11})", r"\1", re.sub(r"[^0-9]+", "", cv["phone"]))
-
- keys = list(cv.keys())
- for k in keys:
- # deal with json objects
- if k.find("_obj") > 0:
- try:
- cv[k] = json_loads(cv[k])
- cv[k] = [a for _, a in cv[k].items()]
- nms = []
- for n in cv[k]:
- if type(n) != type({}) or "name" not in n or not n.get("name"): continue
- n["name"] = re.sub(r"((442)|\t )", "", n["name"]).strip().lower()
- if not n["name"]: continue
- nms.append(n["name"])
- if nms:
- t = k[:-4]
- cv[f"{t}_kwd"] = nms
- cv[f"{t}_tks"] = rag_tokenizer.tokenize(" ".join(nms))
- except Exception as e:
- print("【EXCEPTION】:", str(traceback.format_exc()), cv[k])
- cv[k] = []
-
- # tokenize fields
- if k in tks_fld:
- cv[f"{k}_tks"] = rag_tokenizer.tokenize(cv[k])
- if k in small_tks_fld: cv[f"{k}_sm_tks"] = rag_tokenizer.tokenize(cv[f"{k}_tks"])
-
- # keyword fields
- if k in kwd_fld: cv[f"{k}_kwd"] = [n.lower()
- for n in re.split(r"[\t,,;;. ]",
- re.sub(r"([^a-zA-Z])[ ]+([^a-zA-Z ])", r"\1,\2", cv[k])
- ) if n]
-
- if k in num_fld and cv.get(k): cv[f"{k}_int"] = cv[k]
-
- cv["email_kwd"] = cv.get("email_tks", "").replace(" ", "")
- # for name field
- if cv.get("name"):
- nm = re.sub(r"[\n——\-\((\+].*", "", cv["name"].strip())
- nm = re.sub(r"[ \t ]+", " ", nm)
- if re.match(r"[a-zA-Z ]+$", nm):
- if len(nm.split(" ")) > 1:
- cv["name"] = nm
- else:
- nm = ""
- elif nm and (surname.isit(nm[0]) or surname.isit(nm[:2])):
- nm = re.sub(r"[a-zA-Z]+.*", "", nm[:5])
- else:
- nm = ""
- cv["name"] = nm.strip()
- name = cv["name"]
-
- # name pingyin and its prefix
- cv["name_py_tks"] = " ".join(PY.get_pinyins(nm[:20], '')) + " " + " ".join(PY.get_pinyins(nm[:20], ' '))
- cv["name_py_pref0_tks"] = ""
- cv["name_py_pref_tks"] = ""
- for py in PY.get_pinyins(nm[:20], ''):
- for i in range(2, len(py) + 1): cv["name_py_pref_tks"] += " " + py[:i]
- for py in PY.get_pinyins(nm[:20], ' '):
- py = py.split(" ")
- for i in range(1, len(py) + 1): cv["name_py_pref0_tks"] += " " + "".join(py[:i])
-
- cv["name_kwd"] = name
- cv["name_pinyin_kwd"] = PY.get_pinyins(nm[:20], ' ')[:3]
- cv["name_tks"] = (
- rag_tokenizer.tokenize(name) + " " + (" ".join(list(name)) if not re.match(r"[a-zA-Z ]+$", name) else "")
- ) if name else ""
- else:
- cv["integerity_flt"] /= 2.
-
- if cv.get("phone"):
- r = re.search(r"(1[3456789][0-9]{9})", cv["phone"])
- if not r:
- cv["phone"] = ""
- else:
- cv["phone"] = r.group(1)
-
- # deal with date fields
- if cv.get("updated_at") and isinstance(cv["updated_at"], datetime.datetime):
- cv["updated_at_dt"] = cv["updated_at"].strftime('%Y-%m-%d %H:%M:%S')
- else:
- y, m, d = getYMD(str(cv.get("updated_at", "")))
- if not y: y = "2012"
- if not m: m = "01"
- if not d: d = "01"
- cv["updated_at_dt"] = f"%s-%02d-%02d 00:00:00" % (y, int(m), int(d))
- # long text tokenize
-
- if cv.get("responsibilities"): cv["responsibilities_ltks"] = rag_tokenizer.tokenize(rmHtmlTag(cv["responsibilities"]))
-
- # for yes or no field
- fea = []
- for f, y, n in is_fld:
- if f not in cv: continue
- if cv[f] == '是': fea.append(y)
- if cv[f] == '否': fea.append(n)
-
- if fea: cv["tag_kwd"] = fea
-
- cv = forEdu(cv)
- cv = forProj(cv)
- cv = forWork(cv)
- cv = birth(cv)
-
- cv["corp_proj_sch_deg_kwd"] = [c for c in cv.get("corp_tag_kwd", [])]
- for i in range(len(cv["corp_proj_sch_deg_kwd"])):
- for j in cv.get("sch_rank_kwd", []): cv["corp_proj_sch_deg_kwd"][i] += "+" + j
- for i in range(len(cv["corp_proj_sch_deg_kwd"])):
- if cv.get("highest_degree_kwd"): cv["corp_proj_sch_deg_kwd"][i] += "+" + cv["highest_degree_kwd"]
-
- try:
- if not cv.get("work_exp_flt") and cv.get("work_start_time"):
- if re.match(r"[0-9]{9,}", str(cv["work_start_time"])):
- cv["work_start_dt"] = turnTm2Dt(cv["work_start_time"])
- cv["work_exp_flt"] = (time.time() - int(int(cv["work_start_time"]) / 1000)) / 3600. / 24. / 365.
- elif re.match(r"[0-9]{4}[^0-9]", str(cv["work_start_time"])):
- y, m, d = getYMD(str(cv["work_start_time"]))
- cv["work_start_dt"] = f"%s-%02d-%02d 00:00:00" % (y, int(m), int(d))
- cv["work_exp_flt"] = int(str(datetime.date.today())[0:4]) - int(y)
- except Exception as e:
- print("【EXCEPTION】", e, "==>", cv.get("work_start_time"))
- if "work_exp_flt" not in cv and cv.get("work_experience", 0): cv["work_exp_flt"] = int(cv["work_experience"]) / 12.
-
- keys = list(cv.keys())
- for k in keys:
- if not re.search(r"_(fea|tks|nst|dt|int|flt|ltks|kwd|id)$", k): del cv[k]
- for k in cv.keys():
- if not re.search("_(kwd|id)$", k) or type(cv[k]) != type([]): continue
- cv[k] = list(set([re.sub("(市)$", "", str(n)) for n in cv[k] if n not in ['中国', '0']]))
- keys = [k for k in cv.keys() if re.search(r"_feas*$", k)]
- for k in keys:
- if cv[k] <= 0: del cv[k]
-
- cv["tob_resume_id"] = str(cv["tob_resume_id"])
- cv["id"] = cv["tob_resume_id"]
- print("CCCCCCCCCCCCCCC")
-
- return dealWithInt64(cv)
-
-
- def dealWithInt64(d):
- if isinstance(d, dict):
- for n, v in d.items():
- d[n] = dealWithInt64(v)
-
- if isinstance(d, list):
- d = [dealWithInt64(t) for t in d]
-
- if isinstance(d, np.integer): d = int(d)
- return d
|