| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737 | 
							- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - 
 - import logging
 - import sys
 - import six
 - import cv2
 - import numpy as np
 - import math
 - from PIL import Image
 - 
 - 
 - class DecodeImage(object):
 -     """ decode image """
 - 
 -     def __init__(self,
 -                  img_mode='RGB',
 -                  channel_first=False,
 -                  ignore_orientation=False,
 -                  **kwargs):
 -         self.img_mode = img_mode
 -         self.channel_first = channel_first
 -         self.ignore_orientation = ignore_orientation
 - 
 -     def __call__(self, data):
 -         img = data['image']
 -         if six.PY2:
 -             assert isinstance(img, str) and len(
 -                 img) > 0, "invalid input 'img' in DecodeImage"
 -         else:
 -             assert isinstance(img, bytes) and len(
 -                 img) > 0, "invalid input 'img' in DecodeImage"
 -         img = np.frombuffer(img, dtype='uint8')
 -         if self.ignore_orientation:
 -             img = cv2.imdecode(img, cv2.IMREAD_IGNORE_ORIENTATION |
 -                                cv2.IMREAD_COLOR)
 -         else:
 -             img = cv2.imdecode(img, 1)
 -         if img is None:
 -             return None
 -         if self.img_mode == 'GRAY':
 -             img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
 -         elif self.img_mode == 'RGB':
 -             assert img.shape[2] == 3, 'invalid shape of image[%s]' % (
 -                 img.shape)
 -             img = img[:, :, ::-1]
 - 
 -         if self.channel_first:
 -             img = img.transpose((2, 0, 1))
 - 
 -         data['image'] = img
 -         return data
 - 
 - 
 - class StandardizeImage(object):
 -     """normalize image
 -     Args:
 -         mean (list): im - mean
 -         std (list): im / std
 -         is_scale (bool): whether need im / 255
 -         norm_type (str): type in ['mean_std', 'none']
 -     """
 - 
 -     def __init__(self, mean, std, is_scale=True, norm_type='mean_std'):
 -         self.mean = mean
 -         self.std = std
 -         self.is_scale = is_scale
 -         self.norm_type = norm_type
 - 
 -     def __call__(self, im, im_info):
 -         """
 -         Args:
 -             im (np.ndarray): image (np.ndarray)
 -             im_info (dict): info of image
 -         Returns:
 -             im (np.ndarray):  processed image (np.ndarray)
 -             im_info (dict): info of processed image
 -         """
 -         im = im.astype(np.float32, copy=False)
 -         if self.is_scale:
 -             scale = 1.0 / 255.0
 -             im *= scale
 - 
 -         if self.norm_type == 'mean_std':
 -             mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
 -             std = np.array(self.std)[np.newaxis, np.newaxis, :]
 -             im -= mean
 -             im /= std
 -         return im, im_info
 - 
 - 
 - class NormalizeImage(object):
 -     """ normalize image such as subtract mean, divide std
 -     """
 - 
 -     def __init__(self, scale=None, mean=None, std=None, order='chw', **kwargs):
 -         if isinstance(scale, str):
 -             scale = np.float32(scale) if scale != 'None' else None
 -         self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
 -         mean = mean if mean is not None else [0.485, 0.456, 0.406]
 -         std = std if std is not None else [0.229, 0.224, 0.225]
 - 
 -         shape = (3, 1, 1) if order == 'chw' else (1, 1, 3)
 -         self.mean = np.array(mean).reshape(shape).astype('float32')
 -         self.std = np.array(std).reshape(shape).astype('float32')
 - 
 -     def __call__(self, data):
 -         img = data['image']
 -         from PIL import Image
 -         if isinstance(img, Image.Image):
 -             img = np.array(img)
 -         assert isinstance(img,
 -                           np.ndarray), "invalid input 'img' in NormalizeImage"
 -         data['image'] = (
 -             img.astype('float32') * self.scale - self.mean) / self.std
 -         return data
 - 
 - 
 - class ToCHWImage(object):
 -     """ convert hwc image to chw image
 -     """
 - 
 -     def __init__(self, **kwargs):
 -         pass
 - 
 -     def __call__(self, data):
 -         img = data['image']
 -         from PIL import Image
 -         if isinstance(img, Image.Image):
 -             img = np.array(img)
 -         data['image'] = img.transpose((2, 0, 1))
 -         return data
 - 
 - 
 - class Fasttext(object):
 -     def __init__(self, path="None", **kwargs):
 -         import fasttext
 -         self.fast_model = fasttext.load_model(path)
 - 
 -     def __call__(self, data):
 -         label = data['label']
 -         fast_label = self.fast_model[label]
 -         data['fast_label'] = fast_label
 -         return data
 - 
 - 
 - class KeepKeys(object):
 -     def __init__(self, keep_keys, **kwargs):
 -         self.keep_keys = keep_keys
 - 
 -     def __call__(self, data):
 -         data_list = []
 -         for key in self.keep_keys:
 -             data_list.append(data[key])
 -         return data_list
 - 
 - 
 - class Pad(object):
 -     def __init__(self, size=None, size_div=32, **kwargs):
 -         if size is not None and not isinstance(size, (int, list, tuple)):
 -             raise TypeError("Type of target_size is invalid. Now is {}".format(
 -                 type(size)))
 -         if isinstance(size, int):
 -             size = [size, size]
 -         self.size = size
 -         self.size_div = size_div
 - 
 -     def __call__(self, data):
 - 
 -         img = data['image']
 -         img_h, img_w = img.shape[0], img.shape[1]
 -         if self.size:
 -             resize_h2, resize_w2 = self.size
 -             assert (
 -                 img_h < resize_h2 and img_w < resize_w2
 -             ), '(h, w) of target size should be greater than (img_h, img_w)'
 -         else:
 -             resize_h2 = max(
 -                 int(math.ceil(img.shape[0] / self.size_div) * self.size_div),
 -                 self.size_div)
 -             resize_w2 = max(
 -                 int(math.ceil(img.shape[1] / self.size_div) * self.size_div),
 -                 self.size_div)
 -         img = cv2.copyMakeBorder(
 -             img,
 -             0,
 -             resize_h2 - img_h,
 -             0,
 -             resize_w2 - img_w,
 -             cv2.BORDER_CONSTANT,
 -             value=0)
 -         data['image'] = img
 -         return data
 - 
 - 
 - class LinearResize(object):
 -     """resize image by target_size and max_size
 -     Args:
 -         target_size (int): the target size of image
 -         keep_ratio (bool): whether keep_ratio or not, default true
 -         interp (int): method of resize
 -     """
 - 
 -     def __init__(self, target_size, keep_ratio=True, interp=cv2.INTER_LINEAR):
 -         if isinstance(target_size, int):
 -             target_size = [target_size, target_size]
 -         self.target_size = target_size
 -         self.keep_ratio = keep_ratio
 -         self.interp = interp
 - 
 -     def __call__(self, im, im_info):
 -         """
 -         Args:
 -             im (np.ndarray): image (np.ndarray)
 -             im_info (dict): info of image
 -         Returns:
 -             im (np.ndarray):  processed image (np.ndarray)
 -             im_info (dict): info of processed image
 -         """
 -         assert len(self.target_size) == 2
 -         assert self.target_size[0] > 0 and self.target_size[1] > 0
 -         _im_channel = im.shape[2]
 -         im_scale_y, im_scale_x = self.generate_scale(im)
 -         im = cv2.resize(
 -             im,
 -             None,
 -             None,
 -             fx=im_scale_x,
 -             fy=im_scale_y,
 -             interpolation=self.interp)
 -         im_info['im_shape'] = np.array(im.shape[:2]).astype('float32')
 -         im_info['scale_factor'] = np.array(
 -             [im_scale_y, im_scale_x]).astype('float32')
 -         return im, im_info
 - 
 -     def generate_scale(self, im):
 -         """
 -         Args:
 -             im (np.ndarray): image (np.ndarray)
 -         Returns:
 -             im_scale_x: the resize ratio of X
 -             im_scale_y: the resize ratio of Y
 -         """
 -         origin_shape = im.shape[:2]
 -         _im_c = im.shape[2]
 -         if self.keep_ratio:
 -             im_size_min = np.min(origin_shape)
 -             im_size_max = np.max(origin_shape)
 -             target_size_min = np.min(self.target_size)
 -             target_size_max = np.max(self.target_size)
 -             im_scale = float(target_size_min) / float(im_size_min)
 -             if np.round(im_scale * im_size_max) > target_size_max:
 -                 im_scale = float(target_size_max) / float(im_size_max)
 -             im_scale_x = im_scale
 -             im_scale_y = im_scale
 -         else:
 -             resize_h, resize_w = self.target_size
 -             im_scale_y = resize_h / float(origin_shape[0])
 -             im_scale_x = resize_w / float(origin_shape[1])
 -         return im_scale_y, im_scale_x
 - 
 - 
 - class Resize(object):
 -     def __init__(self, size=(640, 640), **kwargs):
 -         self.size = size
 - 
 -     def resize_image(self, img):
 -         resize_h, resize_w = self.size
 -         ori_h, ori_w = img.shape[:2]  # (h, w, c)
 -         ratio_h = float(resize_h) / ori_h
 -         ratio_w = float(resize_w) / ori_w
 -         img = cv2.resize(img, (int(resize_w), int(resize_h)))
 -         return img, [ratio_h, ratio_w]
 - 
 -     def __call__(self, data):
 -         img = data['image']
 -         if 'polys' in data:
 -             text_polys = data['polys']
 - 
 -         img_resize, [ratio_h, ratio_w] = self.resize_image(img)
 -         if 'polys' in data:
 -             new_boxes = []
 -             for box in text_polys:
 -                 new_box = []
 -                 for cord in box:
 -                     new_box.append([cord[0] * ratio_w, cord[1] * ratio_h])
 -                 new_boxes.append(new_box)
 -             data['polys'] = np.array(new_boxes, dtype=np.float32)
 -         data['image'] = img_resize
 -         return data
 - 
 - 
 - class DetResizeForTest(object):
 -     def __init__(self, **kwargs):
 -         super(DetResizeForTest, self).__init__()
 -         self.resize_type = 0
 -         self.keep_ratio = False
 -         if 'image_shape' in kwargs:
 -             self.image_shape = kwargs['image_shape']
 -             self.resize_type = 1
 -             if 'keep_ratio' in kwargs:
 -                 self.keep_ratio = kwargs['keep_ratio']
 -         elif 'limit_side_len' in kwargs:
 -             self.limit_side_len = kwargs['limit_side_len']
 -             self.limit_type = kwargs.get('limit_type', 'min')
 -         elif 'resize_long' in kwargs:
 -             self.resize_type = 2
 -             self.resize_long = kwargs.get('resize_long', 960)
 -         else:
 -             self.limit_side_len = 736
 -             self.limit_type = 'min'
 - 
 -     def __call__(self, data):
 -         img = data['image']
 -         src_h, src_w, _ = img.shape
 -         if sum([src_h, src_w]) < 64:
 -             img = self.image_padding(img)
 - 
 -         if self.resize_type == 0:
 -             # img, shape = self.resize_image_type0(img)
 -             img, [ratio_h, ratio_w] = self.resize_image_type0(img)
 -         elif self.resize_type == 2:
 -             img, [ratio_h, ratio_w] = self.resize_image_type2(img)
 -         else:
 -             # img, shape = self.resize_image_type1(img)
 -             img, [ratio_h, ratio_w] = self.resize_image_type1(img)
 -         data['image'] = img
 -         data['shape'] = np.array([src_h, src_w, ratio_h, ratio_w])
 -         return data
 - 
 -     def image_padding(self, im, value=0):
 -         h, w, c = im.shape
 -         im_pad = np.zeros((max(32, h), max(32, w), c), np.uint8) + value
 -         im_pad[:h, :w, :] = im
 -         return im_pad
 - 
 -     def resize_image_type1(self, img):
 -         resize_h, resize_w = self.image_shape
 -         ori_h, ori_w = img.shape[:2]  # (h, w, c)
 -         if self.keep_ratio is True:
 -             resize_w = ori_w * resize_h / ori_h
 -             N = math.ceil(resize_w / 32)
 -             resize_w = N * 32
 -         ratio_h = float(resize_h) / ori_h
 -         ratio_w = float(resize_w) / ori_w
 -         img = cv2.resize(img, (int(resize_w), int(resize_h)))
 -         # return img, np.array([ori_h, ori_w])
 -         return img, [ratio_h, ratio_w]
 - 
 -     def resize_image_type0(self, img):
 -         """
 -         resize image to a size multiple of 32 which is required by the network
 -         args:
 -             img(array): array with shape [h, w, c]
 -         return(tuple):
 -             img, (ratio_h, ratio_w)
 -         """
 -         limit_side_len = self.limit_side_len
 -         h, w, c = img.shape
 - 
 -         # limit the max side
 -         if self.limit_type == 'max':
 -             if max(h, w) > limit_side_len:
 -                 if h > w:
 -                     ratio = float(limit_side_len) / h
 -                 else:
 -                     ratio = float(limit_side_len) / w
 -             else:
 -                 ratio = 1.
 -         elif self.limit_type == 'min':
 -             if min(h, w) < limit_side_len:
 -                 if h < w:
 -                     ratio = float(limit_side_len) / h
 -                 else:
 -                     ratio = float(limit_side_len) / w
 -             else:
 -                 ratio = 1.
 -         elif self.limit_type == 'resize_long':
 -             ratio = float(limit_side_len) / max(h, w)
 -         else:
 -             raise Exception('not support limit type, image ')
 -         resize_h = int(h * ratio)
 -         resize_w = int(w * ratio)
 - 
 -         resize_h = max(int(round(resize_h / 32) * 32), 32)
 -         resize_w = max(int(round(resize_w / 32) * 32), 32)
 - 
 -         try:
 -             if int(resize_w) <= 0 or int(resize_h) <= 0:
 -                 return None, (None, None)
 -             img = cv2.resize(img, (int(resize_w), int(resize_h)))
 -         except BaseException:
 -             logging.exception("{} {} {}".format(img.shape, resize_w, resize_h))
 -             sys.exit(0)
 -         ratio_h = resize_h / float(h)
 -         ratio_w = resize_w / float(w)
 -         return img, [ratio_h, ratio_w]
 - 
 -     def resize_image_type2(self, img):
 -         h, w, _ = img.shape
 - 
 -         resize_w = w
 -         resize_h = h
 - 
 -         if resize_h > resize_w:
 -             ratio = float(self.resize_long) / resize_h
 -         else:
 -             ratio = float(self.resize_long) / resize_w
 - 
 -         resize_h = int(resize_h * ratio)
 -         resize_w = int(resize_w * ratio)
 - 
 -         max_stride = 128
 -         resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
 -         resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
 -         img = cv2.resize(img, (int(resize_w), int(resize_h)))
 -         ratio_h = resize_h / float(h)
 -         ratio_w = resize_w / float(w)
 - 
 -         return img, [ratio_h, ratio_w]
 - 
 - 
 - class E2EResizeForTest(object):
 -     def __init__(self, **kwargs):
 -         super(E2EResizeForTest, self).__init__()
 -         self.max_side_len = kwargs['max_side_len']
 -         self.valid_set = kwargs['valid_set']
 - 
 -     def __call__(self, data):
 -         img = data['image']
 -         src_h, src_w, _ = img.shape
 -         if self.valid_set == 'totaltext':
 -             im_resized, [ratio_h, ratio_w] = self.resize_image_for_totaltext(
 -                 img, max_side_len=self.max_side_len)
 -         else:
 -             im_resized, (ratio_h, ratio_w) = self.resize_image(
 -                 img, max_side_len=self.max_side_len)
 -         data['image'] = im_resized
 -         data['shape'] = np.array([src_h, src_w, ratio_h, ratio_w])
 -         return data
 - 
 -     def resize_image_for_totaltext(self, im, max_side_len=512):
 -         h, w, _ = im.shape
 -         resize_w = w
 -         resize_h = h
 -         ratio = 1.25
 -         if h * ratio > max_side_len:
 -             ratio = float(max_side_len) / resize_h
 -         resize_h = int(resize_h * ratio)
 -         resize_w = int(resize_w * ratio)
 - 
 -         max_stride = 128
 -         resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
 -         resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
 -         im = cv2.resize(im, (int(resize_w), int(resize_h)))
 -         ratio_h = resize_h / float(h)
 -         ratio_w = resize_w / float(w)
 -         return im, (ratio_h, ratio_w)
 - 
 -     def resize_image(self, im, max_side_len=512):
 -         """
 -         resize image to a size multiple of max_stride which is required by the network
 -         :param im: the resized image
 -         :param max_side_len: limit of max image size to avoid out of memory in gpu
 -         :return: the resized image and the resize ratio
 -         """
 -         h, w, _ = im.shape
 - 
 -         resize_w = w
 -         resize_h = h
 - 
 -         # Fix the longer side
 -         if resize_h > resize_w:
 -             ratio = float(max_side_len) / resize_h
 -         else:
 -             ratio = float(max_side_len) / resize_w
 - 
 -         resize_h = int(resize_h * ratio)
 -         resize_w = int(resize_w * ratio)
 - 
 -         max_stride = 128
 -         resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
 -         resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
 -         im = cv2.resize(im, (int(resize_w), int(resize_h)))
 -         ratio_h = resize_h / float(h)
 -         ratio_w = resize_w / float(w)
 - 
 -         return im, (ratio_h, ratio_w)
 - 
 - 
 - class KieResize(object):
 -     def __init__(self, **kwargs):
 -         super(KieResize, self).__init__()
 -         self.max_side, self.min_side = kwargs['img_scale'][0], kwargs[
 -             'img_scale'][1]
 - 
 -     def __call__(self, data):
 -         img = data['image']
 -         points = data['points']
 -         src_h, src_w, _ = img.shape
 -         im_resized, scale_factor, [ratio_h, ratio_w
 -                                    ], [new_h, new_w] = self.resize_image(img)
 -         resize_points = self.resize_boxes(img, points, scale_factor)
 -         data['ori_image'] = img
 -         data['ori_boxes'] = points
 -         data['points'] = resize_points
 -         data['image'] = im_resized
 -         data['shape'] = np.array([new_h, new_w])
 -         return data
 - 
 -     def resize_image(self, img):
 -         norm_img = np.zeros([1024, 1024, 3], dtype='float32')
 -         scale = [512, 1024]
 -         h, w = img.shape[:2]
 -         max_long_edge = max(scale)
 -         max_short_edge = min(scale)
 -         scale_factor = min(max_long_edge / max(h, w),
 -                            max_short_edge / min(h, w))
 -         resize_w, resize_h = int(w * float(scale_factor) + 0.5), int(h * float(
 -             scale_factor) + 0.5)
 -         max_stride = 32
 -         resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
 -         resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
 -         im = cv2.resize(img, (resize_w, resize_h))
 -         new_h, new_w = im.shape[:2]
 -         w_scale = new_w / w
 -         h_scale = new_h / h
 -         scale_factor = np.array(
 -             [w_scale, h_scale, w_scale, h_scale], dtype=np.float32)
 -         norm_img[:new_h, :new_w, :] = im
 -         return norm_img, scale_factor, [h_scale, w_scale], [new_h, new_w]
 - 
 -     def resize_boxes(self, im, points, scale_factor):
 -         points = points * scale_factor
 -         img_shape = im.shape[:2]
 -         points[:, 0::2] = np.clip(points[:, 0::2], 0, img_shape[1])
 -         points[:, 1::2] = np.clip(points[:, 1::2], 0, img_shape[0])
 -         return points
 - 
 - 
 - class SRResize(object):
 -     def __init__(self,
 -                  imgH=32,
 -                  imgW=128,
 -                  down_sample_scale=4,
 -                  keep_ratio=False,
 -                  min_ratio=1,
 -                  mask=False,
 -                  infer_mode=False,
 -                  **kwargs):
 -         self.imgH = imgH
 -         self.imgW = imgW
 -         self.keep_ratio = keep_ratio
 -         self.min_ratio = min_ratio
 -         self.down_sample_scale = down_sample_scale
 -         self.mask = mask
 -         self.infer_mode = infer_mode
 - 
 -     def __call__(self, data):
 -         imgH = self.imgH
 -         imgW = self.imgW
 -         images_lr = data["image_lr"]
 -         transform2 = ResizeNormalize(
 -             (imgW // self.down_sample_scale, imgH // self.down_sample_scale))
 -         images_lr = transform2(images_lr)
 -         data["img_lr"] = images_lr
 -         if self.infer_mode:
 -             return data
 - 
 -         images_HR = data["image_hr"]
 -         _label_strs = data["label"]
 -         transform = ResizeNormalize((imgW, imgH))
 -         images_HR = transform(images_HR)
 -         data["img_hr"] = images_HR
 -         return data
 - 
 - 
 - class ResizeNormalize(object):
 -     def __init__(self, size, interpolation=Image.BICUBIC):
 -         self.size = size
 -         self.interpolation = interpolation
 - 
 -     def __call__(self, img):
 -         img = img.resize(self.size, self.interpolation)
 -         img_numpy = np.array(img).astype("float32")
 -         img_numpy = img_numpy.transpose((2, 0, 1)) / 255
 -         return img_numpy
 - 
 - 
 - class GrayImageChannelFormat(object):
 -     """
 -     format gray scale image's channel: (3,h,w) -> (1,h,w)
 -     Args:
 -         inverse: inverse gray image
 -     """
 - 
 -     def __init__(self, inverse=False, **kwargs):
 -         self.inverse = inverse
 - 
 -     def __call__(self, data):
 -         img = data['image']
 -         img_single_channel = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 -         img_expanded = np.expand_dims(img_single_channel, 0)
 - 
 -         if self.inverse:
 -             data['image'] = np.abs(img_expanded - 1)
 -         else:
 -             data['image'] = img_expanded
 - 
 -         data['src_image'] = img
 -         return data
 - 
 - 
 - class Permute(object):
 -     """permute image
 -     Args:
 -         to_bgr (bool): whether convert RGB to BGR
 -         channel_first (bool): whether convert HWC to CHW
 -     """
 - 
 -     def __init__(self, ):
 -         super(Permute, self).__init__()
 - 
 -     def __call__(self, im, im_info):
 -         """
 -         Args:
 -             im (np.ndarray): image (np.ndarray)
 -             im_info (dict): info of image
 -         Returns:
 -             im (np.ndarray):  processed image (np.ndarray)
 -             im_info (dict): info of processed image
 -         """
 -         im = im.transpose((2, 0, 1)).copy()
 -         return im, im_info
 - 
 - 
 - class PadStride(object):
 -     """ padding image for model with FPN, instead PadBatch(pad_to_stride) in original config
 -     Args:
 -         stride (bool): model with FPN need image shape % stride == 0
 -     """
 - 
 -     def __init__(self, stride=0):
 -         self.coarsest_stride = stride
 - 
 -     def __call__(self, im, im_info):
 -         """
 -         Args:
 -             im (np.ndarray): image (np.ndarray)
 -             im_info (dict): info of image
 -         Returns:
 -             im (np.ndarray):  processed image (np.ndarray)
 -             im_info (dict): info of processed image
 -         """
 -         coarsest_stride = self.coarsest_stride
 -         if coarsest_stride <= 0:
 -             return im, im_info
 -         im_c, im_h, im_w = im.shape
 -         pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride)
 -         pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride)
 -         padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32)
 -         padding_im[:, :im_h, :im_w] = im
 -         return padding_im, im_info
 - 
 - 
 - def decode_image(im_file, im_info):
 -     """read rgb image
 -     Args:
 -         im_file (str|np.ndarray): input can be image path or np.ndarray
 -         im_info (dict): info of image
 -     Returns:
 -         im (np.ndarray):  processed image (np.ndarray)
 -         im_info (dict): info of processed image
 -     """
 -     if isinstance(im_file, str):
 -         with open(im_file, 'rb') as f:
 -             im_read = f.read()
 -         data = np.frombuffer(im_read, dtype='uint8')
 -         im = cv2.imdecode(data, 1)  # BGR mode, but need RGB mode
 -         im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
 -     else:
 -         im = im_file
 -     im_info['im_shape'] = np.array(im.shape[:2], dtype=np.float32)
 -     im_info['scale_factor'] = np.array([1., 1.], dtype=np.float32)
 -     return im, im_info
 - 
 - 
 - def preprocess(im, preprocess_ops):
 -     # process image by preprocess_ops
 -     im_info = {
 -         'scale_factor': np.array(
 -             [1., 1.], dtype=np.float32),
 -         'im_shape': None,
 -     }
 -     im, im_info = decode_image(im, im_info)
 -     for operator in preprocess_ops:
 -         im, im_info = operator(im, im_info)
 -     return im, im_info
 - 
 - 
 - def nms(bboxes, scores, iou_thresh):
 -     import numpy as np
 -     x1 = bboxes[:, 0]
 -     y1 = bboxes[:, 1]
 -     x2 = bboxes[:, 2]
 -     y2 = bboxes[:, 3]
 -     areas = (y2 - y1) * (x2 - x1)
 - 
 -     indices = []
 -     index = scores.argsort()[::-1]
 -     while index.size > 0:
 -         i = index[0]
 -         indices.append(i)
 -         x11 = np.maximum(x1[i], x1[index[1:]])
 -         y11 = np.maximum(y1[i], y1[index[1:]])
 -         x22 = np.minimum(x2[i], x2[index[1:]])
 -         y22 = np.minimum(y2[i], y2[index[1:]])
 -         w = np.maximum(0, x22 - x11 + 1)
 -         h = np.maximum(0, y22 - y11 + 1)
 -         overlaps = w * h
 -         ious = overlaps / (areas[i] + areas[index[1:]] - overlaps)
 -         idx = np.where(ious <= iou_thresh)[0]
 -         index = index[idx + 1]
 -     return indices
 
 
  |