Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

rerank_model.py 11KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import re
  17. import threading
  18. import requests
  19. import torch
  20. from FlagEmbedding import FlagReranker
  21. from huggingface_hub import snapshot_download
  22. import os
  23. from abc import ABC
  24. import numpy as np
  25. from api.utils.file_utils import get_home_cache_dir
  26. from rag.utils import num_tokens_from_string, truncate
  27. import json
  28. def sigmoid(x):
  29. return 1 / (1 + np.exp(-x))
  30. class Base(ABC):
  31. def __init__(self, key, model_name):
  32. pass
  33. def similarity(self, query: str, texts: list):
  34. raise NotImplementedError("Please implement encode method!")
  35. class DefaultRerank(Base):
  36. _model = None
  37. _model_lock = threading.Lock()
  38. def __init__(self, key, model_name, **kwargs):
  39. """
  40. If you have trouble downloading HuggingFace models, -_^ this might help!!
  41. For Linux:
  42. export HF_ENDPOINT=https://hf-mirror.com
  43. For Windows:
  44. Good luck
  45. ^_-
  46. """
  47. if not DefaultRerank._model:
  48. with DefaultRerank._model_lock:
  49. if not DefaultRerank._model:
  50. try:
  51. DefaultRerank._model = FlagReranker(os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z]+/", "", model_name)), use_fp16=torch.cuda.is_available())
  52. except Exception as e:
  53. model_dir = snapshot_download(repo_id= model_name,
  54. local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z]+/", "", model_name)),
  55. local_dir_use_symlinks=False)
  56. DefaultRerank._model = FlagReranker(model_dir, use_fp16=torch.cuda.is_available())
  57. self._model = DefaultRerank._model
  58. def similarity(self, query: str, texts: list):
  59. pairs = [(query,truncate(t, 2048)) for t in texts]
  60. token_count = 0
  61. for _, t in pairs:
  62. token_count += num_tokens_from_string(t)
  63. batch_size = 4096
  64. res = []
  65. for i in range(0, len(pairs), batch_size):
  66. scores = self._model.compute_score(pairs[i:i + batch_size], max_length=2048)
  67. scores = sigmoid(np.array(scores)).tolist()
  68. if isinstance(scores, float): res.append(scores)
  69. else: res.extend(scores)
  70. return np.array(res), token_count
  71. class JinaRerank(Base):
  72. def __init__(self, key, model_name="jina-reranker-v1-base-en",
  73. base_url="https://api.jina.ai/v1/rerank"):
  74. self.base_url = "https://api.jina.ai/v1/rerank"
  75. self.headers = {
  76. "Content-Type": "application/json",
  77. "Authorization": f"Bearer {key}"
  78. }
  79. self.model_name = model_name
  80. def similarity(self, query: str, texts: list):
  81. texts = [truncate(t, 8196) for t in texts]
  82. data = {
  83. "model": self.model_name,
  84. "query": query,
  85. "documents": texts,
  86. "top_n": len(texts)
  87. }
  88. res = requests.post(self.base_url, headers=self.headers, json=data).json()
  89. return np.array([d["relevance_score"] for d in res["results"]]), res["usage"]["total_tokens"]
  90. class YoudaoRerank(DefaultRerank):
  91. _model = None
  92. _model_lock = threading.Lock()
  93. def __init__(self, key=None, model_name="maidalun1020/bce-reranker-base_v1", **kwargs):
  94. from BCEmbedding import RerankerModel
  95. if not YoudaoRerank._model:
  96. with YoudaoRerank._model_lock:
  97. if not YoudaoRerank._model:
  98. try:
  99. print("LOADING BCE...")
  100. YoudaoRerank._model = RerankerModel(model_name_or_path=os.path.join(
  101. get_home_cache_dir(),
  102. re.sub(r"^[a-zA-Z]+/", "", model_name)))
  103. except Exception as e:
  104. YoudaoRerank._model = RerankerModel(
  105. model_name_or_path=model_name.replace(
  106. "maidalun1020", "InfiniFlow"))
  107. self._model = YoudaoRerank._model
  108. def similarity(self, query: str, texts: list):
  109. pairs = [(query, truncate(t, self._model.max_length)) for t in texts]
  110. token_count = 0
  111. for _, t in pairs:
  112. token_count += num_tokens_from_string(t)
  113. batch_size = 32
  114. res = []
  115. for i in range(0, len(pairs), batch_size):
  116. scores = self._model.compute_score(pairs[i:i + batch_size], max_length=self._model.max_length)
  117. scores = sigmoid(np.array(scores)).tolist()
  118. if isinstance(scores, float): res.append(scores)
  119. else: res.extend(scores)
  120. return np.array(res), token_count
  121. class XInferenceRerank(Base):
  122. def __init__(self, key="xxxxxxx", model_name="", base_url=""):
  123. self.model_name = model_name
  124. self.base_url = base_url
  125. self.headers = {
  126. "Content-Type": "application/json",
  127. "accept": "application/json"
  128. }
  129. def similarity(self, query: str, texts: list):
  130. if len(texts) == 0:
  131. return np.array([]), 0
  132. data = {
  133. "model": self.model_name,
  134. "query": query,
  135. "return_documents": "true",
  136. "return_len": "true",
  137. "documents": texts
  138. }
  139. res = requests.post(self.base_url, headers=self.headers, json=data).json()
  140. return np.array([d["relevance_score"] for d in res["results"]]), res["meta"]["tokens"]["input_tokens"]+res["meta"]["tokens"]["output_tokens"]
  141. class LocalAIRerank(Base):
  142. def __init__(self, key, model_name, base_url):
  143. pass
  144. def similarity(self, query: str, texts: list):
  145. raise NotImplementedError("The LocalAIRerank has not been implement")
  146. class NvidiaRerank(Base):
  147. def __init__(
  148. self, key, model_name, base_url="https://ai.api.nvidia.com/v1/retrieval/nvidia/"
  149. ):
  150. if not base_url:
  151. base_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/"
  152. self.model_name = model_name
  153. if self.model_name == "nvidia/nv-rerankqa-mistral-4b-v3":
  154. self.base_url = os.path.join(
  155. base_url, "nv-rerankqa-mistral-4b-v3", "reranking"
  156. )
  157. if self.model_name == "nvidia/rerank-qa-mistral-4b":
  158. self.base_url = os.path.join(base_url, "reranking")
  159. self.model_name = "nv-rerank-qa-mistral-4b:1"
  160. self.headers = {
  161. "accept": "application/json",
  162. "Content-Type": "application/json",
  163. "Authorization": f"Bearer {key}",
  164. }
  165. def similarity(self, query: str, texts: list):
  166. token_count = num_tokens_from_string(query) + sum(
  167. [num_tokens_from_string(t) for t in texts]
  168. )
  169. data = {
  170. "model": self.model_name,
  171. "query": {"text": query},
  172. "passages": [{"text": text} for text in texts],
  173. "truncate": "END",
  174. "top_n": len(texts),
  175. }
  176. res = requests.post(self.base_url, headers=self.headers, json=data).json()
  177. rank = np.array([d["logit"] for d in res["rankings"]])
  178. indexs = [d["index"] for d in res["rankings"]]
  179. return rank[indexs], token_count
  180. class LmStudioRerank(Base):
  181. def __init__(self, key, model_name, base_url):
  182. pass
  183. def similarity(self, query: str, texts: list):
  184. raise NotImplementedError("The LmStudioRerank has not been implement")
  185. class OpenAI_APIRerank(Base):
  186. def __init__(self, key, model_name, base_url):
  187. pass
  188. def similarity(self, query: str, texts: list):
  189. raise NotImplementedError("The api has not been implement")
  190. class CoHereRerank(Base):
  191. def __init__(self, key, model_name, base_url=None):
  192. from cohere import Client
  193. self.client = Client(api_key=key)
  194. self.model_name = model_name
  195. def similarity(self, query: str, texts: list):
  196. token_count = num_tokens_from_string(query) + sum(
  197. [num_tokens_from_string(t) for t in texts]
  198. )
  199. res = self.client.rerank(
  200. model=self.model_name,
  201. query=query,
  202. documents=texts,
  203. top_n=len(texts),
  204. return_documents=False,
  205. )
  206. rank = np.array([d.relevance_score for d in res.results])
  207. indexs = [d.index for d in res.results]
  208. return rank[indexs], token_count
  209. class TogetherAIRerank(Base):
  210. def __init__(self, key, model_name, base_url):
  211. pass
  212. def similarity(self, query: str, texts: list):
  213. raise NotImplementedError("The api has not been implement")
  214. class SILICONFLOWRerank(Base):
  215. def __init__(
  216. self, key, model_name, base_url="https://api.siliconflow.cn/v1/rerank"
  217. ):
  218. if not base_url:
  219. base_url = "https://api.siliconflow.cn/v1/rerank"
  220. self.model_name = model_name
  221. self.base_url = base_url
  222. self.headers = {
  223. "accept": "application/json",
  224. "content-type": "application/json",
  225. "authorization": f"Bearer {key}",
  226. }
  227. def similarity(self, query: str, texts: list):
  228. payload = {
  229. "model": self.model_name,
  230. "query": query,
  231. "documents": texts,
  232. "top_n": len(texts),
  233. "return_documents": False,
  234. "max_chunks_per_doc": 1024,
  235. "overlap_tokens": 80,
  236. }
  237. response = requests.post(
  238. self.base_url, json=payload, headers=self.headers
  239. ).json()
  240. rank = np.array([d["relevance_score"] for d in response["results"]])
  241. indexs = [d["index"] for d in response["results"]]
  242. return (
  243. rank[indexs],
  244. response["meta"]["tokens"]["input_tokens"] + response["meta"]["tokens"]["output_tokens"],
  245. )
  246. class BaiduYiyanRerank(Base):
  247. def __init__(self, key, model_name, base_url=None):
  248. from qianfan.resources import Reranker
  249. key = json.loads(key)
  250. ak = key.get("yiyan_ak", "")
  251. sk = key.get("yiyan_sk", "")
  252. self.client = Reranker(ak=ak, sk=sk)
  253. self.model_name = model_name
  254. def similarity(self, query: str, texts: list):
  255. res = self.client.do(
  256. model=self.model_name,
  257. query=query,
  258. documents=texts,
  259. top_n=len(texts),
  260. ).body
  261. rank = np.array([d["relevance_score"] for d in res["results"]])
  262. indexs = [d["index"] for d in res["results"]]
  263. return rank[indexs], res["usage"]["total_tokens"]
  264. class VoyageRerank(Base):
  265. def __init__(self, key, model_name, base_url=None):
  266. import voyageai
  267. self.client = voyageai.Client(api_key=key)
  268. self.model_name = model_name
  269. def similarity(self, query: str, texts: list):
  270. res = self.client.rerank(
  271. query=query, documents=texts, model=self.model_name, top_k=len(texts)
  272. )
  273. rank = np.array([r.relevance_score for r in res.results])
  274. indexs = [r.index for r in res.results]
  275. return rank[indexs], res.total_tokens