| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120 |
- import copy
- import re
-
- from api.db import ParserType
- from rag.nlp import huqie, tokenize, tokenize_table, add_positions
- from deepdoc.parser import PdfParser
- from rag.utils import num_tokens_from_string
-
-
- class Pdf(PdfParser):
- def __init__(self):
- self.model_speciess = ParserType.MANUAL.value
- super().__init__()
-
- def __call__(self, filename, binary=None, from_page=0,
- to_page=100000, zoomin=3, callback=None):
- callback(msg="OCR is running...")
- self.__images__(
- filename if not binary else binary,
- zoomin,
- from_page,
- to_page)
- callback(0.2, "OCR finished.")
-
- from timeit import default_timer as timer
- start = timer()
- self._layouts_rec(zoomin)
- callback(0.5, "Layout analysis finished.")
- print("paddle layouts:", timer() - start)
- self._table_transformer_job(zoomin)
- callback(0.7, "Table analysis finished.")
- self._text_merge()
- self._concat_downward(concat_between_pages=False)
- self._filter_forpages()
- callback(0.77, "Text merging finished")
- tbls = self._extract_table_figure(True, zoomin, False, True)
-
- # clean mess
- for b in self.boxes:
- b["text"] = re.sub(r"([\t ]|\u3000){2,}", " ", b["text"].strip())
-
- # merge chunks with the same bullets
- self._merge_with_same_bullet()
-
- # merge title with decent chunk
- i = 0
- while i + 1 < len(self.boxes):
- b = self.boxes[i]
- if b.get("layoutno","").find("title") < 0:
- i += 1
- continue
- b_ = self.boxes[i + 1]
- b_["text"] = b["text"] + "\n" + b_["text"]
- b_["x0"] = min(b["x0"], b_["x0"])
- b_["x1"] = max(b["x1"], b_["x1"])
- b_["top"] = b["top"]
- self.boxes.pop(i)
-
- callback(0.8, "Parsing finished")
- for b in self.boxes: print(b["text"], b.get("layoutno"))
-
- print(tbls)
- return [b["text"] + self._line_tag(b, zoomin) for b in self.boxes], tbls
-
-
- def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
- """
- Only pdf is supported.
- """
- pdf_parser = None
-
- if re.search(r"\.pdf$", filename, re.IGNORECASE):
- pdf_parser = Pdf()
- cks, tbls = pdf_parser(filename if not binary else binary,
- from_page=from_page, to_page=to_page, callback=callback)
- else: raise NotImplementedError("file type not supported yet(pdf supported)")
- doc = {
- "docnm_kwd": filename
- }
- doc["title_tks"] = huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", doc["docnm_kwd"]))
- doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
- # is it English
- eng = lang.lower() == "english"#pdf_parser.is_english
-
- res = tokenize_table(tbls, doc, eng)
-
- i = 0
- chunk = []
- tk_cnt = 0
- def add_chunk():
- nonlocal chunk, res, doc, pdf_parser, tk_cnt
- d = copy.deepcopy(doc)
- ck = "\n".join(chunk)
- tokenize(d, pdf_parser.remove_tag(ck), pdf_parser.is_english)
- d["image"], poss = pdf_parser.crop(ck, need_position=True)
- add_positions(d, poss)
- res.append(d)
- chunk = []
- tk_cnt = 0
-
- while i < len(cks):
- if tk_cnt > 128: add_chunk()
- txt = cks[i]
- txt_ = pdf_parser.remove_tag(txt)
- i += 1
- cnt = num_tokens_from_string(txt_)
- chunk.append(txt)
- tk_cnt += cnt
- if chunk: add_chunk()
- for i, d in enumerate(res):
- print(d)
- # d["image"].save(f"./logs/{i}.jpg")
- return res
-
-
- if __name__ == "__main__":
- import sys
- def dummy(a, b):
- pass
- chunk(sys.argv[1], callback=dummy)
|