| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260 |
- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- from typing import Optional
-
- from huggingface_hub import snapshot_download
- from zhipuai import ZhipuAI
- import os
- from abc import ABC
- from ollama import Client
- import dashscope
- from openai import OpenAI
- from FlagEmbedding import FlagModel
- import torch
- import numpy as np
-
- from api.utils.file_utils import get_project_base_directory
- from rag.utils import num_tokens_from_string
-
-
- try:
- flag_model = FlagModel(os.path.join(
- get_project_base_directory(),
- "rag/res/bge-large-zh-v1.5"),
- query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
- use_fp16=torch.cuda.is_available())
- except Exception as e:
- model_dir = snapshot_download(repo_id="BAAI/bge-large-zh-v1.5",
- local_dir=os.path.join(get_project_base_directory(), "rag/res/bge-large-zh-v1.5"),
- local_dir_use_symlinks=False)
- flag_model = FlagModel(model_dir,
- query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
- use_fp16=torch.cuda.is_available())
-
-
- class Base(ABC):
- def __init__(self, key, model_name):
- pass
-
- def encode(self, texts: list, batch_size=32):
- raise NotImplementedError("Please implement encode method!")
-
- def encode_queries(self, text: str):
- raise NotImplementedError("Please implement encode method!")
-
-
- class HuEmbedding(Base):
- def __init__(self, *args, **kwargs):
- """
- If you have trouble downloading HuggingFace models, -_^ this might help!!
-
- For Linux:
- export HF_ENDPOINT=https://hf-mirror.com
-
- For Windows:
- Good luck
- ^_-
-
- """
- self.model = flag_model
-
- def encode(self, texts: list, batch_size=32):
- texts = [t[:2000] for t in texts]
- token_count = 0
- for t in texts:
- token_count += num_tokens_from_string(t)
- res = []
- for i in range(0, len(texts), batch_size):
- res.extend(self.model.encode(texts[i:i + batch_size]).tolist())
- return np.array(res), token_count
-
- def encode_queries(self, text: str):
- token_count = num_tokens_from_string(text)
- return self.model.encode_queries([text]).tolist()[0], token_count
-
-
- class OpenAIEmbed(Base):
- def __init__(self, key, model_name="text-embedding-ada-002",
- base_url="https://api.openai.com/v1"):
- if not base_url:
- base_url = "https://api.openai.com/v1"
- self.client = OpenAI(api_key=key, base_url=base_url)
- self.model_name = model_name
-
- def encode(self, texts: list, batch_size=32):
- res = self.client.embeddings.create(input=texts,
- model=self.model_name)
- return np.array([d.embedding for d in res.data]
- ), res.usage.total_tokens
-
- def encode_queries(self, text):
- res = self.client.embeddings.create(input=[text],
- model=self.model_name)
- return np.array(res.data[0].embedding), res.usage.total_tokens
-
-
- class QWenEmbed(Base):
- def __init__(self, key, model_name="text_embedding_v2", **kwargs):
- dashscope.api_key = key
- self.model_name = model_name
-
- def encode(self, texts: list, batch_size=10):
- import dashscope
- res = []
- token_count = 0
- texts = [txt[:2048] for txt in texts]
- for i in range(0, len(texts), batch_size):
- resp = dashscope.TextEmbedding.call(
- model=self.model_name,
- input=texts[i:i + batch_size],
- text_type="document"
- )
- embds = [[] for _ in range(len(resp["output"]["embeddings"]))]
- for e in resp["output"]["embeddings"]:
- embds[e["text_index"]] = e["embedding"]
- res.extend(embds)
- token_count += resp["usage"]["total_tokens"]
- return np.array(res), token_count
-
- def encode_queries(self, text):
- resp = dashscope.TextEmbedding.call(
- model=self.model_name,
- input=text[:2048],
- text_type="query"
- )
- return np.array(resp["output"]["embeddings"][0]
- ["embedding"]), resp["usage"]["total_tokens"]
-
-
- class ZhipuEmbed(Base):
- def __init__(self, key, model_name="embedding-2", **kwargs):
- self.client = ZhipuAI(api_key=key)
- self.model_name = model_name
-
- def encode(self, texts: list, batch_size=32):
- arr = []
- tks_num = 0
- for txt in texts:
- res = self.client.embeddings.create(input=txt,
- model=self.model_name)
- arr.append(res.data[0].embedding)
- tks_num += res.usage.total_tokens
- return np.array(arr), tks_num
-
- def encode_queries(self, text):
- res = self.client.embeddings.create(input=text,
- model=self.model_name)
- return np.array(res.data[0].embedding), res.usage.total_tokens
-
-
- class OllamaEmbed(Base):
- def __init__(self, key, model_name, **kwargs):
- self.client = Client(host=kwargs["base_url"])
- self.model_name = model_name
-
- def encode(self, texts: list, batch_size=32):
- arr = []
- tks_num = 0
- for txt in texts:
- res = self.client.embeddings(prompt=txt,
- model=self.model_name)
- arr.append(res["embedding"])
- tks_num += 128
- return np.array(arr), tks_num
-
- def encode_queries(self, text):
- res = self.client.embeddings(prompt=text,
- model=self.model_name)
- return np.array(res["embedding"]), 128
-
-
- class FastEmbed(Base):
- def __init__(
- self,
- key: Optional[str] = None,
- model_name: str = "BAAI/bge-small-en-v1.5",
- cache_dir: Optional[str] = None,
- threads: Optional[int] = None,
- **kwargs,
- ):
- from fastembed import TextEmbedding
- self._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
-
- def encode(self, texts: list, batch_size=32):
- # Using the internal tokenizer to encode the texts and get the total
- # number of tokens
- encodings = self._model.model.tokenizer.encode_batch(texts)
- total_tokens = sum(len(e) for e in encodings)
-
- embeddings = [e.tolist() for e in self._model.embed(texts, batch_size)]
-
- return np.array(embeddings), total_tokens
-
- def encode_queries(self, text: str):
- # Using the internal tokenizer to encode the texts and get the total
- # number of tokens
- encoding = self._model.model.tokenizer.encode(text)
- embedding = next(self._model.query_embed(text)).tolist()
-
- return np.array(embedding), len(encoding.ids)
-
-
- class XinferenceEmbed(Base):
- def __init__(self, key, model_name="", base_url=""):
- self.client = OpenAI(api_key="xxx", base_url=base_url)
- self.model_name = model_name
-
- def encode(self, texts: list, batch_size=32):
- res = self.client.embeddings.create(input=texts,
- model=self.model_name)
- return np.array([d.embedding for d in res.data]
- ), res.usage.total_tokens
-
- def encode_queries(self, text):
- res = self.client.embeddings.create(input=[text],
- model=self.model_name)
- return np.array(res.data[0].embedding), res.usage.total_tokens
-
-
- class YoudaoEmbed(Base):
- _client = None
-
- def __init__(self, key=None, model_name="maidalun1020/bce-embedding-base_v1", **kwargs):
- from BCEmbedding import EmbeddingModel as qanthing
- if not YoudaoEmbed._client:
- try:
- print("LOADING BCE...")
- YoudaoEmbed._client = qanthing(model_name_or_path=os.path.join(
- get_project_base_directory(),
- "rag/res/bce-embedding-base_v1"))
- except Exception as e:
- YoudaoEmbed._client = qanthing(
- model_name_or_path=model_name.replace(
- "maidalun1020", "InfiniFlow"))
-
- def encode(self, texts: list, batch_size=10):
- res = []
- token_count = 0
- for t in texts:
- token_count += num_tokens_from_string(t)
- for i in range(0, len(texts), batch_size):
- embds = YoudaoEmbed._client.encode(texts[i:i + batch_size])
- res.extend(embds)
- return np.array(res), token_count
-
- def encode_queries(self, text):
- embds = YoudaoEmbed._client.encode([text])
- return np.array(embds[0]), num_tokens_from_string(text)
|