:::tip NOTE Knowledgebase APIs :::
RAGFlow.create_dataset(
name: str,
avatar: str = "",
description: str = "",
language: str = "English",
permission: str = "me",
document_count: int = 0,
chunk_count: int = 0,
parse_method: str = "naive",
parser_config: DataSet.ParserConfig = None
) -> DataSet
Creates a knowledge base (dataset).
str, RequiredThe unique name of the dataset to create. It must adhere to the following requirements:
strBase64 encoding of the avatar. Defaults to ""
strThe id of the tenant associated with the created dataset is used to identify different users. Defaults to None.
strThe description of the created dataset. Defaults to "".
strThe language setting of the created dataset. Defaults to "English". ????????????
strThe specific model used by the dataset to generate vector embeddings. Defaults to "".
strSpecify who can operate on the dataset. Defaults to "me".
intThe number of documents associated with the dataset. Defaults to 0.
document_count can’t be changed.intThe number of data chunks generated or processed by the created dataset. Defaults to 0.
strThe method used by the dataset to parse and process data.
"naive".Dataset.ParserConfigThe configuration settings for the parser used by the dataset.
DataSet
description: dataset object
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
ds = rag.create_dataset(name="kb_1")
RAGFlow.delete_datasets(ids: List[str] = None)
Deletes knowledge bases.
List[str]The ids of the datasets to be deleted.
no return
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
rag.delete_datasets(ids=["id_1","id_2"])
RAGFlow.list_datasets(
page: int = 1,
page_size: int = 1024,
orderby: str = "create_time",
desc: bool = True,
id: str = None,
name: str = None
) -> List[DataSet]
Lists all knowledge bases in the RAGFlow system.
intThe current page number to retrieve from the paginated data. This parameter determines which set of records will be fetched. Defaults to 1.
intThe number of records to retrieve per page. This controls how many records will be included in each page. Defaults to 1024.
strThe field by which the records should be sorted. This specifies the attribute or column used to order the results. Defaults to "create_time".
boolWhether the sorting should be in descending order. Defaults to True.
strThe id of the dataset to be got. Defaults to None.
strThe name of the dataset to be got. Defaults to None.
List[DataSet]
description:the list of datasets.
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
for ds in rag.list_datasets():
print(ds)
DataSet.update(update_message: dict)
no return
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
ds = rag.get_dataset(name="kb_1")
ds.update({"parse_method":"manual", ...}}
:::tip API GROUPING File management inside knowledge base :::
RAGFLOW.upload_document(ds:DataSet, name:str, blob:bytes)-> bool
RAGFlow.get_document(id:str=None,name:str=None) -> Document
str, RequiredID of the document to retrieve.
strName or title of the document.
A document object containing the following attributes:
strId of the retrieved document. Defaults to "".
strThumbnail image of the retrieved document. Defaults to "".
strKnowledge base ID related to the document. Defaults to "".
strMethod used to parse the document. Defaults to "".
ParserConfigConfiguration object for the parser. Defaults to None.
strSource type of the document. Defaults to "".
strType or category of the document. Defaults to "".
strCreator of the document. Defaults to "".
strstring
“
Name or title of the document. Defaults to "".
intSize of the document in bytes or some other unit. Defaults to 0.
intNumber of tokens in the document. Defaults to "".
intNumber of chunks the document is split into. Defaults to 0.
floatCurrent processing progress as a percentage. Defaults to 0.0.
strMessage indicating current progress status. Defaults to "".
datetimeStart time of the document processing. Defaults to None.
floatDuration of the processing in seconds or minutes. Defaults to 0.0.
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
doc = rag.get_document(id="wdfxb5t547d",name='testdocument.txt')
print(doc)
Document.save() -> bool
bool
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
doc = rag.get_document(id="wdfxb5t547d")
doc.parser_method= "manual"
doc.save()
Document.download() -> bytes
bytes of the document.
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
doc = rag.get_document(id="wdfxb5t547d")
open("~/ragflow.txt", "w+").write(doc.download())
print(doc)
Dataset.list_docs(keywords: str=None, offset: int=0, limit:int = -1) -> List[Document]
strList documents whose name has the given keywords. Defaults to None.
intThe beginning number of records for paging. Defaults to 0.
intRecords number to return, -1 means all of them. Records number to return, -1 means all of them.
List[Document]
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
ds = rag.create_dataset(name="kb_1")
filename1 = "~/ragflow.txt"
rag.create_document(ds, name=filename1 , blob=open(filename1 , "rb").read())
filename2 = "~/infinity.txt"
rag.create_document(ds, name=filename2 , blob=open(filename2 , "rb").read())
for d in ds.list_docs(keywords="rag", offset=0, limit=12):
print(d)
Document.delete() -> bool
bool description: delete success or not
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
ds = rag.create_dataset(name="kb_1")
filename1 = "~/ragflow.txt"
rag.create_document(ds, name=filename1 , blob=open(filename1 , "rb").read())
filename2 = "~/infinity.txt"
rag.create_document(ds, name=filename2 , blob=open(filename2 , "rb").read())
for d in ds.list_docs(keywords="rag", offset=0, limit=12):
d.delete()
Document.async_parse() -> None
RAGFLOW.async_parse_documents() -> None
????????????????????????????????????????????????????
????????????????????????????????????????????????????
#document parse and cancel
rag = RAGFlow(API_KEY, HOST_ADDRESS)
ds = rag.create_dataset(name="dataset_name")
name3 = 'ai.pdf'
path = 'test_data/ai.pdf'
rag.create_document(ds, name=name3, blob=open(path, "rb").read())
doc = rag.get_document(name="ai.pdf")
doc.async_parse()
print("Async parsing initiated")
rag.async_cancel_parse_documents(ids)
RAGFLOW.async_cancel_parse_documents()-> None
list[]?????????????????????????????????????????????????
#documents parse and cancel
rag = RAGFlow(API_KEY, HOST_ADDRESS)
ds = rag.create_dataset(name="God5")
documents = [
{'name': 'test1.txt', 'path': 'test_data/test1.txt'},
{'name': 'test2.txt', 'path': 'test_data/test2.txt'},
{'name': 'test3.txt', 'path': 'test_data/test3.txt'}
]
# Create documents in bulk
for doc_info in documents:
with open(doc_info['path'], "rb") as file:
created_doc = rag.create_document(ds, name=doc_info['name'], blob=file.read())
docs = [rag.get_document(name=doc_info['name']) for doc_info in documents]
ids = [doc.id for doc in docs]
rag.async_parse_documents(ids)
print("Async bulk parsing initiated")
for doc in docs:
for progress, msg in doc.join(interval=5, timeout=10):
print(f"{doc.name}: Progress: {progress}, Message: {msg}")
cancel_result = rag.async_cancel_parse_documents(ids)
print("Async bulk parsing cancelled")
??????????????????
Document.join(interval=15, timeout=3600) -> iteral[Tuple[float, str]]
intTime interval in seconds for progress report. Defaults to 15.
intTimeout in seconds. Defaults to 3600.
iteral[Tuple[float, str]]
Document.add_chunk(content:str) -> Chunk
str, Requiredchunk
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
doc = rag.get_document(id="wdfxb5t547d")
chunk = doc.add_chunk(content="xxxxxxx")
Chunk.delete() -> bool
bool
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
doc = rag.get_document(id="wdfxb5t547d")
chunk = doc.add_chunk(content="xxxxxxx")
chunk.delete()
Chunk.save() -> bool
bool
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
doc = rag.get_document(id="wdfxb5t547d")
chunk = doc.add_chunk(content="xxxxxxx")
chunk.content = "sdfx"
chunk.save()
RAGFlow.retrieval(question:str, datasets:List[Dataset], document=List[Document]=None, offset:int=0, limit:int=6, similarity_threshold:float=0.1, vector_similarity_weight:float=0.3, top_k:int=1024) -> List[Chunk]
str, RequiredThe user query or query keywords. Defaults to "".
List[Dataset], RequiredThe scope of datasets.
List[Document]The scope of document. None means no limitation. Defaults to None.
intThe beginning point of retrieved records. Defaults to 0.
intThe maximum number of records needed to return. Defaults to 6.
floatThe minimum similarity score. Defaults to 0.2.
floatThe weight of vector cosine similarity, 1 - x is the term similarity weight. Defaults to 0.3.
intNumber of records engaged in vector cosine computaton. Defaults to 1024.
List[Chunk]
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
ds = rag.get_dataset(name="ragflow")
name = 'ragflow_test.txt'
path = 'test_data/ragflow_test.txt'
rag.create_document(ds, name=name, blob=open(path, "rb").read())
doc = rag.get_document(name=name)
doc.async_parse()
# Wait for parsing to complete
for progress, msg in doc.join(interval=5, timeout=30):
print(progress, msg)
for c in rag.retrieval(question="What's ragflow?",
datasets=[ds], documents=[doc],
offset=0, limit=6, similarity_threshold=0.1,
vector_similarity_weight=0.3,
top_k=1024
):
print(c)
:::tip API GROUPING Chat APIs :::
RAGFlow.create_chat(
name: str = "assistant",
avatar: str = "path",
knowledgebases: List[DataSet] = ["kb1"],
llm: Chat.LLM = None,
prompt: Chat.Prompt = None
) -> Chat
Chat
description: assitant object.
strThe name of the created chat. Defaults to "assistant".
strThe icon of the created chat. Defaults to "path".
List[DataSet]Select knowledgebases associated. Defaults to ["kb1"].
strThe id of the created chat. Defaults to "".
LLMThe llm of the created chat. Defaults to None. When the value is None, a dictionary with the following values will be generated as the default.
strNone, it will return the user’s default model.float0.1.float0.3float0.2.float0.7.int512.strInstructions you need LLM to follow when LLM answers questions, like character design, answer length and answer language etc.
Defaults:
You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence "The answer you are looking for is not found in the knowledge base!" Answers need to consider chat history.
Here is the knowledge base:
{knowledge}
The above is the knowledge base.
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
kb = rag.get_dataset(name="kb_1")
assi = rag.create_chat("Miss R", knowledgebases=[kb])
Chat.update(update_message: dict)
no return
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
kb = rag.get_knowledgebase(name="kb_1")
assi = rag.create_chat("Miss R", knowledgebases=[kb])
assi.update({"temperature":0.8})
RAGFlow.delete_chats(ids: List[str] = None)
strIDs of the chats to be deleted.
no return
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
rag.delete_chats(ids=["id_1","id_2"])
RAGFlow.list_chats(
page: int = 1,
page_size: int = 1024,
orderby: str = "create_time",
desc: bool = True,
id: str = None,
name: str = None
) -> List[Chat]
intThe current page number to retrieve from the paginated data. This parameter determines which set of records will be fetched.
1intThe number of records to retrieve per page. This controls how many records will be included in each page.
1024stringThe field by which the records should be sorted. This specifies the attribute or column used to order the results.
"create_time"boolA boolean flag indicating whether the sorting should be in descending order.
TruestringThe ID of the chat to be retrieved.
NonestringThe name of the chat to be retrieved.
None
A list of chat objects.
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
for assi in rag.list_chats():
print(assi)
:::tip API GROUPING Chat-session APIs :::
Chat.create_session(name: str = "New session") -> Session
A session object.
strThe id of the created session is used to identify different sessions.
strThe name of the created session. Defaults to "New session".
List[Message]The messages of the created session.
Defaults:
??????????????????????????????????????????????????????????????????????????????????????????????
[{"role": "assistant", "content": "Hi! I am your assistant,can I help you?"}]
strThe id of associated chat
chat_id can’t be changedfrom ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
assi = rag.list_chats(name="Miss R")
assi = assi[0]
sess = assi.create_session()
Session.update(update_message:dict)
no return
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
assi = rag.list_chats(name="Miss R")
assi = assi[0]
sess = assi.create_session("new_session")
sess.update({"name": "Updated session"...})
Session.ask(question: str, stream: bool = False) -> Optional[Message, iter[Message]]
str, RequiredThe question to start an AI chat. Defaults to None. ???????????????????
boolThe approach of streaming text generation. When stream is True, it outputs results in a streaming fashion; otherwise, it outputs the complete result after the model has finished generating.
[Message, iter[Message]]
strThe id of the message. id is automatically generated. Defaults to None. ???????????????????
strThe content of the message. Defaults to "Hi! I am your assistant, can I help you?".
List[Chunk]The auto-generated reference of the message. Each chunk object includes the following attributes:
strstrNone. ?????????????????????str"".str"".str"".str"".float
A general similarity score, usually a composite score derived from various similarity measures . This score represents the degree of similarity between two objects. The value ranges between 0 and 1, where a value closer to 1 indicates higher similarity. Defaults to None. ????????????????????????????????????floatNone. ?????????????????????????????????floatNone. ???????????????????List[string]None. ??????????????from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
assi = rag.list_chats(name="Miss R")
assi = assi[0]
sess = assi.create_session()
print("\n==================== Miss R =====================\n")
print(assi.get_prologue())
while True:
question = input("\n==================== User =====================\n> ")
print("\n==================== Miss R =====================\n")
cont = ""
for ans in sess.ask(question, stream=True):
print(ans.content[len(cont):], end='', flush=True)
cont = ans.content
Chat.list_sessions(
page: int = 1,
page_size: int = 1024,
orderby: str = "create_time",
desc: bool = True,
id: str = None,
name: str = None
) -> List[Session]
List[Session] description: the List contains information about multiple assistant object, with each dictionary containing information about one assistant.
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
assi = rag.list_chats(name="Miss R")
assi = assi[0]
for sess in assi.list_sessions():
print(sess)
intThe current page number to retrieve from the paginated data. This parameter determines which set of records will be fetched.
1intThe number of records to retrieve per page. This controls how many records will be included in each page.
1024stringThe field by which the records should be sorted. This specifies the attribute or column used to order the results.
"create_time"boolA boolean flag indicating whether the sorting should be in descending order.
TruestringThe ID of the chat to be retrieved.
NonestringThe name of the chat to be retrieved.
None
---Chat.delete_sessions(ids:List[str] = None)
no return
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
assi = rag.list_chats(name="Miss R")
assi = assi[0]
assi.delete_sessions(ids=["id_1","id_2"])
List[string]IDs of the sessions to be deleted.
None