Nelze vybrat více než 25 témat Téma musí začínat písmenem nebo číslem, může obsahovat pomlčky („-“) a může být dlouhé až 35 znaků.

init_data.py 21KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599
  1. #
  2. # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. #
  16. import os
  17. import time
  18. import uuid
  19. from copy import deepcopy
  20. from api.db import LLMType, UserTenantRole
  21. from api.db.db_models import init_database_tables as init_web_db, LLMFactories, LLM, TenantLLM
  22. from api.db.services import UserService
  23. from api.db.services.document_service import DocumentService
  24. from api.db.services.knowledgebase_service import KnowledgebaseService
  25. from api.db.services.llm_service import LLMFactoriesService, LLMService, TenantLLMService, LLMBundle
  26. from api.db.services.user_service import TenantService, UserTenantService
  27. from api.settings import CHAT_MDL, EMBEDDING_MDL, ASR_MDL, IMAGE2TEXT_MDL, PARSERS, LLM_FACTORY, API_KEY, LLM_BASE_URL
  28. def init_superuser():
  29. user_info = {
  30. "id": uuid.uuid1().hex,
  31. "password": "admin",
  32. "nickname": "admin",
  33. "is_superuser": True,
  34. "email": "admin@ragflow.io",
  35. "creator": "system",
  36. "status": "1",
  37. }
  38. tenant = {
  39. "id": user_info["id"],
  40. "name": user_info["nickname"] + "‘s Kingdom",
  41. "llm_id": CHAT_MDL,
  42. "embd_id": EMBEDDING_MDL,
  43. "asr_id": ASR_MDL,
  44. "parser_ids": PARSERS,
  45. "img2txt_id": IMAGE2TEXT_MDL
  46. }
  47. usr_tenant = {
  48. "tenant_id": user_info["id"],
  49. "user_id": user_info["id"],
  50. "invited_by": user_info["id"],
  51. "role": UserTenantRole.OWNER
  52. }
  53. tenant_llm = []
  54. for llm in LLMService.query(fid=LLM_FACTORY):
  55. tenant_llm.append(
  56. {"tenant_id": user_info["id"], "llm_factory": LLM_FACTORY, "llm_name": llm.llm_name, "model_type": llm.model_type,
  57. "api_key": API_KEY, "api_base": LLM_BASE_URL})
  58. if not UserService.save(**user_info):
  59. print("\033[93m【ERROR】\033[0mcan't init admin.")
  60. return
  61. TenantService.insert(**tenant)
  62. UserTenantService.insert(**usr_tenant)
  63. TenantLLMService.insert_many(tenant_llm)
  64. print(
  65. "【INFO】Super user initialized. \033[93memail: admin@ragflow.io, password: admin\033[0m. Changing the password after logining is strongly recomanded.")
  66. chat_mdl = LLMBundle(tenant["id"], LLMType.CHAT, tenant["llm_id"])
  67. msg = chat_mdl.chat(system="", history=[
  68. {"role": "user", "content": "Hello!"}], gen_conf={})
  69. if msg.find("ERROR: ") == 0:
  70. print(
  71. "\33[91m【ERROR】\33[0m: ",
  72. "'{}' dosen't work. {}".format(
  73. tenant["llm_id"],
  74. msg))
  75. embd_mdl = LLMBundle(tenant["id"], LLMType.EMBEDDING, tenant["embd_id"])
  76. v, c = embd_mdl.encode(["Hello!"])
  77. if c == 0:
  78. print(
  79. "\33[91m【ERROR】\33[0m:",
  80. " '{}' dosen't work!".format(
  81. tenant["embd_id"]))
  82. factory_infos = [{
  83. "name": "OpenAI",
  84. "logo": "",
  85. "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
  86. "status": "1",
  87. }, {
  88. "name": "Tongyi-Qianwen",
  89. "logo": "",
  90. "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
  91. "status": "1",
  92. }, {
  93. "name": "ZHIPU-AI",
  94. "logo": "",
  95. "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
  96. "status": "1",
  97. },
  98. {
  99. "name": "Ollama",
  100. "logo": "",
  101. "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
  102. "status": "1",
  103. }, {
  104. "name": "Moonshot",
  105. "logo": "",
  106. "tags": "LLM,TEXT EMBEDDING",
  107. "status": "1",
  108. }, {
  109. "name": "FastEmbed",
  110. "logo": "",
  111. "tags": "TEXT EMBEDDING",
  112. "status": "1",
  113. }, {
  114. "name": "Xinference",
  115. "logo": "",
  116. "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
  117. "status": "1",
  118. },{
  119. "name": "Youdao",
  120. "logo": "",
  121. "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
  122. "status": "1",
  123. },{
  124. "name": "DeepSeek",
  125. "logo": "",
  126. "tags": "LLM",
  127. "status": "1",
  128. },{
  129. "name": "VolcEngine",
  130. "logo": "",
  131. "tags": "LLM, TEXT EMBEDDING",
  132. "status": "1",
  133. },{
  134. "name": "BaiChuan",
  135. "logo": "",
  136. "tags": "LLM,TEXT EMBEDDING",
  137. "status": "1",
  138. },{
  139. "name": "Jina",
  140. "logo": "",
  141. "tags": "TEXT EMBEDDING, TEXT RE-RANK",
  142. "status": "1",
  143. },{
  144. "name": "BAAI",
  145. "logo": "",
  146. "tags": "TEXT EMBEDDING, TEXT RE-RANK",
  147. "status": "1",
  148. }
  149. # {
  150. # "name": "文心一言",
  151. # "logo": "",
  152. # "tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
  153. # "status": "1",
  154. # },
  155. ]
  156. def init_llm_factory():
  157. llm_infos = [
  158. # ---------------------- OpenAI ------------------------
  159. {
  160. "fid": factory_infos[0]["name"],
  161. "llm_name": "gpt-4o",
  162. "tags": "LLM,CHAT,128K",
  163. "max_tokens": 128000,
  164. "model_type": LLMType.CHAT.value + "," + LLMType.IMAGE2TEXT.value
  165. }, {
  166. "fid": factory_infos[0]["name"],
  167. "llm_name": "gpt-3.5-turbo",
  168. "tags": "LLM,CHAT,4K",
  169. "max_tokens": 4096,
  170. "model_type": LLMType.CHAT.value
  171. }, {
  172. "fid": factory_infos[0]["name"],
  173. "llm_name": "gpt-3.5-turbo-16k-0613",
  174. "tags": "LLM,CHAT,16k",
  175. "max_tokens": 16385,
  176. "model_type": LLMType.CHAT.value
  177. }, {
  178. "fid": factory_infos[0]["name"],
  179. "llm_name": "text-embedding-ada-002",
  180. "tags": "TEXT EMBEDDING,8K",
  181. "max_tokens": 8191,
  182. "model_type": LLMType.EMBEDDING.value
  183. }, {
  184. "fid": factory_infos[0]["name"],
  185. "llm_name": "text-embedding-3-small",
  186. "tags": "TEXT EMBEDDING,8K",
  187. "max_tokens": 8191,
  188. "model_type": LLMType.EMBEDDING.value
  189. }, {
  190. "fid": factory_infos[0]["name"],
  191. "llm_name": "text-embedding-3-large",
  192. "tags": "TEXT EMBEDDING,8K",
  193. "max_tokens": 8191,
  194. "model_type": LLMType.EMBEDDING.value
  195. }, {
  196. "fid": factory_infos[0]["name"],
  197. "llm_name": "whisper-1",
  198. "tags": "SPEECH2TEXT",
  199. "max_tokens": 25 * 1024 * 1024,
  200. "model_type": LLMType.SPEECH2TEXT.value
  201. }, {
  202. "fid": factory_infos[0]["name"],
  203. "llm_name": "gpt-4",
  204. "tags": "LLM,CHAT,8K",
  205. "max_tokens": 8191,
  206. "model_type": LLMType.CHAT.value
  207. }, {
  208. "fid": factory_infos[0]["name"],
  209. "llm_name": "gpt-4-turbo",
  210. "tags": "LLM,CHAT,8K",
  211. "max_tokens": 8191,
  212. "model_type": LLMType.CHAT.value
  213. },{
  214. "fid": factory_infos[0]["name"],
  215. "llm_name": "gpt-4-32k",
  216. "tags": "LLM,CHAT,32K",
  217. "max_tokens": 32768,
  218. "model_type": LLMType.CHAT.value
  219. }, {
  220. "fid": factory_infos[0]["name"],
  221. "llm_name": "gpt-4-vision-preview",
  222. "tags": "LLM,CHAT,IMAGE2TEXT",
  223. "max_tokens": 765,
  224. "model_type": LLMType.IMAGE2TEXT.value
  225. },
  226. # ----------------------- Qwen -----------------------
  227. {
  228. "fid": factory_infos[1]["name"],
  229. "llm_name": "qwen-turbo",
  230. "tags": "LLM,CHAT,8K",
  231. "max_tokens": 8191,
  232. "model_type": LLMType.CHAT.value
  233. }, {
  234. "fid": factory_infos[1]["name"],
  235. "llm_name": "qwen-plus",
  236. "tags": "LLM,CHAT,32K",
  237. "max_tokens": 32768,
  238. "model_type": LLMType.CHAT.value
  239. }, {
  240. "fid": factory_infos[1]["name"],
  241. "llm_name": "qwen-max-1201",
  242. "tags": "LLM,CHAT,6K",
  243. "max_tokens": 5899,
  244. "model_type": LLMType.CHAT.value
  245. }, {
  246. "fid": factory_infos[1]["name"],
  247. "llm_name": "text-embedding-v2",
  248. "tags": "TEXT EMBEDDING,2K",
  249. "max_tokens": 2048,
  250. "model_type": LLMType.EMBEDDING.value
  251. }, {
  252. "fid": factory_infos[1]["name"],
  253. "llm_name": "paraformer-realtime-8k-v1",
  254. "tags": "SPEECH2TEXT",
  255. "max_tokens": 25 * 1024 * 1024,
  256. "model_type": LLMType.SPEECH2TEXT.value
  257. }, {
  258. "fid": factory_infos[1]["name"],
  259. "llm_name": "qwen-vl-max",
  260. "tags": "LLM,CHAT,IMAGE2TEXT",
  261. "max_tokens": 765,
  262. "model_type": LLMType.IMAGE2TEXT.value
  263. },
  264. # ---------------------- ZhipuAI ----------------------
  265. {
  266. "fid": factory_infos[2]["name"],
  267. "llm_name": "glm-3-turbo",
  268. "tags": "LLM,CHAT,",
  269. "max_tokens": 128 * 1000,
  270. "model_type": LLMType.CHAT.value
  271. }, {
  272. "fid": factory_infos[2]["name"],
  273. "llm_name": "glm-4",
  274. "tags": "LLM,CHAT,",
  275. "max_tokens": 128 * 1000,
  276. "model_type": LLMType.CHAT.value
  277. }, {
  278. "fid": factory_infos[2]["name"],
  279. "llm_name": "glm-4v",
  280. "tags": "LLM,CHAT,IMAGE2TEXT",
  281. "max_tokens": 2000,
  282. "model_type": LLMType.IMAGE2TEXT.value
  283. },
  284. {
  285. "fid": factory_infos[2]["name"],
  286. "llm_name": "embedding-2",
  287. "tags": "TEXT EMBEDDING",
  288. "max_tokens": 512,
  289. "model_type": LLMType.EMBEDDING.value
  290. },
  291. # ------------------------ Moonshot -----------------------
  292. {
  293. "fid": factory_infos[4]["name"],
  294. "llm_name": "moonshot-v1-8k",
  295. "tags": "LLM,CHAT,",
  296. "max_tokens": 7900,
  297. "model_type": LLMType.CHAT.value
  298. }, {
  299. "fid": factory_infos[4]["name"],
  300. "llm_name": "moonshot-v1-32k",
  301. "tags": "LLM,CHAT,",
  302. "max_tokens": 32768,
  303. "model_type": LLMType.CHAT.value
  304. }, {
  305. "fid": factory_infos[4]["name"],
  306. "llm_name": "moonshot-v1-128k",
  307. "tags": "LLM,CHAT",
  308. "max_tokens": 128 * 1000,
  309. "model_type": LLMType.CHAT.value
  310. },
  311. # ------------------------ FastEmbed -----------------------
  312. {
  313. "fid": factory_infos[5]["name"],
  314. "llm_name": "BAAI/bge-small-en-v1.5",
  315. "tags": "TEXT EMBEDDING,",
  316. "max_tokens": 512,
  317. "model_type": LLMType.EMBEDDING.value
  318. }, {
  319. "fid": factory_infos[5]["name"],
  320. "llm_name": "BAAI/bge-small-zh-v1.5",
  321. "tags": "TEXT EMBEDDING,",
  322. "max_tokens": 512,
  323. "model_type": LLMType.EMBEDDING.value
  324. }, {
  325. }, {
  326. "fid": factory_infos[5]["name"],
  327. "llm_name": "BAAI/bge-base-en-v1.5",
  328. "tags": "TEXT EMBEDDING,",
  329. "max_tokens": 512,
  330. "model_type": LLMType.EMBEDDING.value
  331. }, {
  332. }, {
  333. "fid": factory_infos[5]["name"],
  334. "llm_name": "BAAI/bge-large-en-v1.5",
  335. "tags": "TEXT EMBEDDING,",
  336. "max_tokens": 512,
  337. "model_type": LLMType.EMBEDDING.value
  338. }, {
  339. "fid": factory_infos[5]["name"],
  340. "llm_name": "sentence-transformers/all-MiniLM-L6-v2",
  341. "tags": "TEXT EMBEDDING,",
  342. "max_tokens": 512,
  343. "model_type": LLMType.EMBEDDING.value
  344. }, {
  345. "fid": factory_infos[5]["name"],
  346. "llm_name": "nomic-ai/nomic-embed-text-v1.5",
  347. "tags": "TEXT EMBEDDING,",
  348. "max_tokens": 8192,
  349. "model_type": LLMType.EMBEDDING.value
  350. }, {
  351. "fid": factory_infos[5]["name"],
  352. "llm_name": "jinaai/jina-embeddings-v2-small-en",
  353. "tags": "TEXT EMBEDDING,",
  354. "max_tokens": 2147483648,
  355. "model_type": LLMType.EMBEDDING.value
  356. }, {
  357. "fid": factory_infos[5]["name"],
  358. "llm_name": "jinaai/jina-embeddings-v2-base-en",
  359. "tags": "TEXT EMBEDDING,",
  360. "max_tokens": 2147483648,
  361. "model_type": LLMType.EMBEDDING.value
  362. },
  363. # ------------------------ Youdao -----------------------
  364. {
  365. "fid": factory_infos[7]["name"],
  366. "llm_name": "maidalun1020/bce-embedding-base_v1",
  367. "tags": "TEXT EMBEDDING,",
  368. "max_tokens": 512,
  369. "model_type": LLMType.EMBEDDING.value
  370. },
  371. {
  372. "fid": factory_infos[7]["name"],
  373. "llm_name": "maidalun1020/bce-reranker-base_v1",
  374. "tags": "RE-RANK, 8K",
  375. "max_tokens": 8196,
  376. "model_type": LLMType.RERANK.value
  377. },
  378. # ------------------------ DeepSeek -----------------------
  379. {
  380. "fid": factory_infos[8]["name"],
  381. "llm_name": "deepseek-chat",
  382. "tags": "LLM,CHAT,",
  383. "max_tokens": 32768,
  384. "model_type": LLMType.CHAT.value
  385. },
  386. {
  387. "fid": factory_infos[8]["name"],
  388. "llm_name": "deepseek-coder",
  389. "tags": "LLM,CHAT,",
  390. "max_tokens": 16385,
  391. "model_type": LLMType.CHAT.value
  392. },
  393. # ------------------------ VolcEngine -----------------------
  394. {
  395. "fid": factory_infos[9]["name"],
  396. "llm_name": "Skylark2-pro-32k",
  397. "tags": "LLM,CHAT,32k",
  398. "max_tokens": 32768,
  399. "model_type": LLMType.CHAT.value
  400. },
  401. {
  402. "fid": factory_infos[9]["name"],
  403. "llm_name": "Skylark2-pro-4k",
  404. "tags": "LLM,CHAT,4k",
  405. "max_tokens": 4096,
  406. "model_type": LLMType.CHAT.value
  407. },
  408. # ------------------------ BaiChuan -----------------------
  409. {
  410. "fid": factory_infos[10]["name"],
  411. "llm_name": "Baichuan2-Turbo",
  412. "tags": "LLM,CHAT,32K",
  413. "max_tokens": 32768,
  414. "model_type": LLMType.CHAT.value
  415. },
  416. {
  417. "fid": factory_infos[10]["name"],
  418. "llm_name": "Baichuan2-Turbo-192k",
  419. "tags": "LLM,CHAT,192K",
  420. "max_tokens": 196608,
  421. "model_type": LLMType.CHAT.value
  422. },
  423. {
  424. "fid": factory_infos[10]["name"],
  425. "llm_name": "Baichuan3-Turbo",
  426. "tags": "LLM,CHAT,32K",
  427. "max_tokens": 32768,
  428. "model_type": LLMType.CHAT.value
  429. },
  430. {
  431. "fid": factory_infos[10]["name"],
  432. "llm_name": "Baichuan3-Turbo-128k",
  433. "tags": "LLM,CHAT,128K",
  434. "max_tokens": 131072,
  435. "model_type": LLMType.CHAT.value
  436. },
  437. {
  438. "fid": factory_infos[10]["name"],
  439. "llm_name": "Baichuan4",
  440. "tags": "LLM,CHAT,128K",
  441. "max_tokens": 131072,
  442. "model_type": LLMType.CHAT.value
  443. },
  444. {
  445. "fid": factory_infos[10]["name"],
  446. "llm_name": "Baichuan-Text-Embedding",
  447. "tags": "TEXT EMBEDDING",
  448. "max_tokens": 512,
  449. "model_type": LLMType.EMBEDDING.value
  450. },
  451. # ------------------------ Jina -----------------------
  452. {
  453. "fid": factory_infos[11]["name"],
  454. "llm_name": "jina-reranker-v1-base-en",
  455. "tags": "RE-RANK,8k",
  456. "max_tokens": 8196,
  457. "model_type": LLMType.RERANK.value
  458. },
  459. {
  460. "fid": factory_infos[11]["name"],
  461. "llm_name": "jina-reranker-v1-turbo-en",
  462. "tags": "RE-RANK,8k",
  463. "max_tokens": 8196,
  464. "model_type": LLMType.RERANK.value
  465. },
  466. {
  467. "fid": factory_infos[11]["name"],
  468. "llm_name": "jina-reranker-v1-tiny-en",
  469. "tags": "RE-RANK,8k",
  470. "max_tokens": 8196,
  471. "model_type": LLMType.RERANK.value
  472. },
  473. {
  474. "fid": factory_infos[11]["name"],
  475. "llm_name": "jina-colbert-v1-en",
  476. "tags": "RE-RANK,8k",
  477. "max_tokens": 8196,
  478. "model_type": LLMType.RERANK.value
  479. },
  480. {
  481. "fid": factory_infos[11]["name"],
  482. "llm_name": "jina-embeddings-v2-base-en",
  483. "tags": "TEXT EMBEDDING",
  484. "max_tokens": 8196,
  485. "model_type": LLMType.EMBEDDING.value
  486. },
  487. {
  488. "fid": factory_infos[11]["name"],
  489. "llm_name": "jina-embeddings-v2-base-de",
  490. "tags": "TEXT EMBEDDING",
  491. "max_tokens": 8196,
  492. "model_type": LLMType.EMBEDDING.value
  493. },
  494. {
  495. "fid": factory_infos[11]["name"],
  496. "llm_name": "jina-embeddings-v2-base-es",
  497. "tags": "TEXT EMBEDDING",
  498. "max_tokens": 8196,
  499. "model_type": LLMType.EMBEDDING.value
  500. },
  501. {
  502. "fid": factory_infos[11]["name"],
  503. "llm_name": "jina-embeddings-v2-base-code",
  504. "tags": "TEXT EMBEDDING",
  505. "max_tokens": 8196,
  506. "model_type": LLMType.EMBEDDING.value
  507. },
  508. {
  509. "fid": factory_infos[11]["name"],
  510. "llm_name": "jina-embeddings-v2-base-zh",
  511. "tags": "TEXT EMBEDDING",
  512. "max_tokens": 8196,
  513. "model_type": LLMType.EMBEDDING.value
  514. },
  515. # ------------------------ BAAI -----------------------
  516. {
  517. "fid": factory_infos[12]["name"],
  518. "llm_name": "BAAI/bge-large-zh-v1.5",
  519. "tags": "TEXT EMBEDDING,",
  520. "max_tokens": 1024,
  521. "model_type": LLMType.EMBEDDING.value
  522. },
  523. {
  524. "fid": factory_infos[12]["name"],
  525. "llm_name": "BAAI/bge-reranker-v2-m3",
  526. "tags": "LLM,CHAT,",
  527. "max_tokens": 16385,
  528. "model_type": LLMType.RERANK.value
  529. },
  530. ]
  531. for info in factory_infos:
  532. try:
  533. LLMFactoriesService.save(**info)
  534. except Exception as e:
  535. pass
  536. for info in llm_infos:
  537. try:
  538. LLMService.save(**info)
  539. except Exception as e:
  540. pass
  541. LLMFactoriesService.filter_delete([LLMFactories.name == "Local"])
  542. LLMService.filter_delete([LLM.fid == "Local"])
  543. LLMService.filter_delete([LLM.fid == "Moonshot", LLM.llm_name == "flag-embedding"])
  544. TenantLLMService.filter_delete([TenantLLM.llm_factory == "Moonshot", TenantLLM.llm_name == "flag-embedding"])
  545. LLMFactoriesService.filter_delete([LLMFactoriesService.model.name == "QAnything"])
  546. LLMService.filter_delete([LLMService.model.fid == "QAnything"])
  547. TenantLLMService.filter_update([TenantLLMService.model.llm_factory == "QAnything"], {"llm_factory": "Youdao"})
  548. ## insert openai two embedding models to the current openai user.
  549. print("Start to insert 2 OpenAI embedding models...")
  550. tenant_ids = set([row["tenant_id"] for row in TenantLLMService.get_openai_models()])
  551. for tid in tenant_ids:
  552. for row in TenantLLMService.query(llm_factory="OpenAI", tenant_id=tid):
  553. row = row.to_dict()
  554. row["model_type"] = LLMType.EMBEDDING.value
  555. row["llm_name"] = "text-embedding-3-small"
  556. row["used_tokens"] = 0
  557. try:
  558. TenantLLMService.save(**row)
  559. row = deepcopy(row)
  560. row["llm_name"] = "text-embedding-3-large"
  561. TenantLLMService.save(**row)
  562. except Exception as e:
  563. pass
  564. break
  565. for kb_id in KnowledgebaseService.get_all_ids():
  566. KnowledgebaseService.update_by_id(kb_id, {"doc_num": DocumentService.get_kb_doc_count(kb_id)})
  567. """
  568. drop table llm;
  569. drop table llm_factories;
  570. update tenant set parser_ids='naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One';
  571. alter table knowledgebase modify avatar longtext;
  572. alter table user modify avatar longtext;
  573. alter table dialog modify icon longtext;
  574. """
  575. def init_web_data():
  576. start_time = time.time()
  577. init_llm_factory()
  578. if not UserService.get_all().count():
  579. init_superuser()
  580. print("init web data success:{}".format(time.time() - start_time))
  581. if __name__ == '__main__':
  582. init_web_db()
  583. init_web_data()